import pytest import torch import torch.fx import torch.multiprocessing as mp import colossalai from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen from colossalai.core import global_context as gpc from colossalai.fx import ColoTracer from colossalai.fx.graph_module import ColoGraphModule from colossalai.fx.passes.meta_info_prop import MetaInfoProp from colossalai.fx.profiler import MetaTensor from colossalai.utils import free_port from tests.test_autochunk.evoformer.evoformer import evoformer_base def _test_fwd(model: torch.nn.Module, gm: ColoGraphModule, node, pair): torch.cuda.reset_peak_memory_stats() now_mem = torch.cuda.memory_allocated() / 1024**2 with torch.no_grad(): node1 = node.clone() pair1 = pair.clone() gm(node1, pair1) new_now_mem = torch.cuda.memory_allocated() / 1024**2 new_max_mem = torch.cuda.max_memory_allocated() / 1024**2 print( "autochunk now mem:%.2f max mem:%.2f" % (new_now_mem - now_mem, new_max_mem - now_mem) ) # test forward with torch.no_grad(): non_fx_out = model(node, pair) fx_out = gm(node, pair) assert torch.allclose( non_fx_out[0], fx_out[0], atol=1e-4 ), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean( torch.abs(non_fx_out[0] - fx_out[0]) ) assert torch.allclose( non_fx_out[1], fx_out[1], atol=1e-4 ), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean( torch.abs(non_fx_out[1] - fx_out[1]) ) def _run_offload_codegen(rank): # launch colossalai to make sure we could execute colossalai.utils.checkpoint currectly colossalai.launch( config={}, rank=rank, world_size=1, host="localhost", port=free_port(), backend="nccl", ) # build model and input model = evoformer_base().cuda() node = torch.randn(1, 100, 300, 256).cuda() pair = torch.randn(1, 300, 300, 128).cuda() # trace the module and replace codegen graph = ColoTracer().trace( model, meta_args={ "node": node.to(torch.device("meta")), "pair": pair.to(torch.device("meta")), }, ) gm_prop = torch.fx.symbolic_trace(model) # must use symbolic_trace interp = MetaInfoProp(gm_prop) interp.propagate( MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0") ) # now run it twice to get meta info in graph module, not necessary gm = torch.fx.GraphModule(model, graph) interp = MetaInfoProp(gm) interp.propagate( MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0") ) codegen = AutoChunkCodeGen(gm_prop) graph.set_codegen(codegen) gm = ColoGraphModule(model, graph) gm.recompile() # assert we have all the components # code = graph.python_code("self").src # print(code) _test_fwd(model, gm, node, pair) gpc.destroy() def test_autochunk(): mp.spawn(_run_offload_codegen, nprocs=1) if __name__ == "__main__": _run_offload_codegen(0)