# Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partialmethod from typing import Optional import torch import torch.nn as nn from .primitives import Linear, LayerNorm from .tensor_utils import permute_final_dims class TriangleMultiplicativeUpdate(nn.Module): """ Implements Algorithms 11 and 12. """ def __init__(self, c_z, c_hidden, _outgoing=True): """ Args: c_z: Input channel dimension c: Hidden channel dimension """ super(TriangleMultiplicativeUpdate, self).__init__() self.c_z = c_z self.c_hidden = c_hidden self._outgoing = _outgoing self.linear_a_p = Linear(self.c_z, self.c_hidden) self.linear_a_g = Linear(self.c_z, self.c_hidden, init="gating") self.linear_b_p = Linear(self.c_z, self.c_hidden) self.linear_b_g = Linear(self.c_z, self.c_hidden, init="gating") self.linear_g = Linear(self.c_z, self.c_z, init="gating") self.linear_z = Linear(self.c_hidden, self.c_z, init="final") self.layer_norm_in = LayerNorm(self.c_z) self.layer_norm_out = LayerNorm(self.c_hidden) self.sigmoid = nn.Sigmoid() def _combine_projections(self, a: torch.Tensor, b: torch.Tensor, ) -> torch.Tensor: raise NotImplementedError("This method needs to be overridden") def forward(self, z: torch.Tensor, mask: Optional[torch.Tensor] = None ) -> torch.Tensor: """ Args: x: [*, N_res, N_res, C_z] input tensor mask: [*, N_res, N_res] input mask Returns: [*, N_res, N_res, C_z] output tensor """ if mask is None: mask = z.new_ones(z.shape[:-1]) mask = mask.unsqueeze(-1) z = self.layer_norm_in(z) a = self.linear_a_p(z) * self.sigmoid(self.linear_a_g(z)) a = a * mask b = self.linear_b_p(z) * self.sigmoid(self.linear_b_g(z)) b = b * mask x = self._combine_projections(a, b) x = self.layer_norm_out(x) x = self.linear_z(x) g = self.sigmoid(self.linear_g(z)) z = x * g return z class TriangleMultiplicationOutgoing(TriangleMultiplicativeUpdate): """ Implements Algorithm 11. """ def _combine_projections(self, a: torch.Tensor, # [*, N_i, N_k, C] b: torch.Tensor, # [*, N_j, N_k, C] ): # [*, C, N_i, N_j] p = torch.matmul( permute_final_dims(a, (2, 0, 1)), permute_final_dims(b, (2, 1, 0)), ) # [*, N_i, N_j, C] return permute_final_dims(p, (1, 2, 0)) class TriangleMultiplicationIncoming(TriangleMultiplicativeUpdate): """ Implements Algorithm 12. """ def _combine_projections(self, a: torch.Tensor, # [*, N_k, N_i, C] b: torch.Tensor, # [*, N_k, N_j, C] ): # [*, C, N_i, N_j] p = torch.matmul( permute_final_dims(a, (2, 1, 0)), permute_final_dims(b, (2, 0, 1)), ) # [*, N_i, N_j, C] return permute_final_dims(p, (1, 2, 0))