import torch from colossalai.pipeline.schedule._utils import get_batch_size, get_micro_batch, merge_batch def test_get_batch_size(): tensor = torch.rand(2, 3) assert get_batch_size(tensor) == 2 assert get_batch_size([tensor]) == 2 assert get_batch_size((1, tensor)) == 2 assert get_batch_size({'tensor': tensor}) == 2 assert get_batch_size({'dummy': [1], 'tensor': tensor}) == 2 assert get_batch_size({'tensor': [tensor]}) == 2 def test_get_micro_batch(): x = torch.rand(2, 1) y = torch.rand(2, 3) micro_batch = get_micro_batch(x, 0, 1) assert torch.equal(micro_batch, x[0:1]) micro_batch = get_micro_batch(x, 1, 1) assert torch.equal(micro_batch, x[1:2]) micro_batch = get_micro_batch([x, y], 0, 1) assert torch.equal(micro_batch[0], x[0:1]) assert torch.equal(micro_batch[1], y[0:1]) micro_batch = get_micro_batch([x, y], 1, 1) assert torch.equal(micro_batch[0], x[1:2]) assert torch.equal(micro_batch[1], y[1:2]) micro_batch = get_micro_batch({'x': x, 'y': y}, 0, 1) assert torch.equal(micro_batch['x'], x[0:1]) assert torch.equal(micro_batch['y'], y[0:1]) micro_batch = get_micro_batch({'x': x, 'y': y}, 1, 1) assert torch.equal(micro_batch['x'], x[1:2]) assert torch.equal(micro_batch['y'], y[1:2]) def test_merge_batch(): x = torch.rand(2, 1) y = torch.rand(2, 3) merged = merge_batch([x[0:1], x[1:2]]) assert torch.equal(merged, x) merged = merge_batch([[x[0:1], y[0:1]], [x[1:2], y[1:2]]]) assert torch.equal(merged[0], x) assert torch.equal(merged[1], y) merged = merge_batch([{'x': x[0:1], 'y': y[0:1]}, {'x': x[1:2], 'y': y[1:2]}]) assert torch.equal(merged['x'], x) assert torch.equal(merged['y'], y)