import argparse import torch from data.bert_helper import SequenceParallelDataIterator, get_batch_for_sequence_parallel from data.dummy_dataloader import DummyDataloader from loss_func.bert_loss import BertLoss from lr_scheduler import AnnealingLR from model.bert import BertForPretrain, build_pipeline_bert import colossalai from colossalai.amp import AMP_TYPE from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.kernel import LayerNorm from colossalai.legacy.engine.schedule import PipelineSchedule from colossalai.logging import get_dist_logger from colossalai.nn.optimizer import FusedAdam from colossalai.utils import MultiTimer, is_using_pp def process_batch_data(batch_data): tokens, types, sentence_order, loss_mask, lm_labels, padding_mask = batch_data if gpc.is_first_rank(ParallelMode.PIPELINE): data = dict(input_ids=tokens, attention_masks=padding_mask, tokentype_ids=types, lm_labels=lm_labels) else: data = dict(attention_masks=padding_mask, tokentype_ids=types, lm_labels=lm_labels) label = dict(loss_mask=loss_mask, sentence_order=sentence_order) return data, label def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('-s', '--synthetic', action="store_true", help="whether use synthetic data") return parser.parse_args() def pipeline_data_process_func(stage_output, micro_batch_data): tokens, types, sentence_order, loss_mask, lm_labels, padding_mask = micro_batch_data if gpc.is_first_rank(ParallelMode.PIPELINE): data = (tokens, padding_mask, types, lm_labels) label = (loss_mask, sentence_order) else: data = (stage_output, padding_mask, types, lm_labels) label = (loss_mask, sentence_order) return data, label def main(): # initialize args = parse_args() colossalai.launch_from_torch(config='./config.py', seed=1234, backend='nccl') logger = get_dist_logger() # build synthetic dataloader BATCH_SIZE_PER_GPUS = gpc.config.GLOBAL_BATCH_SIZE // gpc.get_world_size(ParallelMode.DATA) VOCAB_SIZE = 30528 trainloader = DummyDataloader(batch_size=BATCH_SIZE_PER_GPUS, vocab_size=VOCAB_SIZE, seq_length=gpc.config.SEQ_LENGTH) validloader = DummyDataloader(batch_size=BATCH_SIZE_PER_GPUS, vocab_size=VOCAB_SIZE, seq_length=gpc.config.SEQ_LENGTH) logger.info("Dataloaders are built", ranks=[0]) # build model if hasattr(gpc.config, 'fp16') and gpc.config.fp16.get('mode') == AMP_TYPE.NAIVE: is_naive_fp16 = True else: is_naive_fp16 = False use_pipeline = is_using_pp() kwargs = dict(vocab_size=VOCAB_SIZE, hidden_size=gpc.config.HIDDEN_SIZE, max_sequence_length=gpc.config.SEQ_LENGTH, num_attention_heads=gpc.config.NUM_ATTENTION_HEADS, convert_fp16_to_fp32_in_softmax=True, is_naive_fp16=is_naive_fp16, add_binary_head=gpc.config.ADD_BINARY_HEAD) if use_pipeline: model = build_pipeline_bert(num_layers=gpc.config.DEPTH, num_chunks=1, **kwargs) else: model = BertForPretrain(num_layers=gpc.config.DEPTH, **kwargs) model = model.half() model.reset_parameters() logger.info(f"Model is built with softmax in fp32 = {is_naive_fp16}", ranks=[0]) total_numel = 0 for p in model.parameters(): total_numel += p.numel() logger.info(f"This model has {total_numel} parameters") # build criterion criterion = BertLoss() logger.info("Criterion is built", ranks=[0]) # layernorm and bias has no weight decay weight_decay_params = {'params': []} no_weight_decay_params = {'params': [], 'weight_decay': 0.0} for module_ in model.modules(): if isinstance(module_, LayerNorm): no_weight_decay_params['params'].extend([p for p in list(module_._parameters.values()) if p is not None]) else: weight_decay_params['params'].extend( [p for n, p in list(module_._parameters.items()) if p is not None and n != 'bias']) no_weight_decay_params['params'].extend( [p for n, p in list(module_._parameters.items()) if p is not None and n == 'bias']) logger.info( f"without weight decay param: {len(no_weight_decay_params['params'])}, with weight decay param: {len(weight_decay_params['params'])}" ) # optimizer optimizer = FusedAdam((weight_decay_params, no_weight_decay_params), lr=gpc.config.LR, weight_decay=gpc.config.WEIGHT_DECAY) logger.info("Optimizer is built", ranks=[0]) # lr scheduler # follow Megatron-LM setting warmup_steps = int(gpc.config.DECAY_ITERS * gpc.config.WARMUP_FRACTION) lr_scheduler = AnnealingLR(optimizer=optimizer, max_lr=gpc.config.LR, min_lr=gpc.config.MIN_LR, warmup_steps=warmup_steps, decay_steps=gpc.config.DECAY_ITERS, decay_style='linear') logger.info(f"LR Scheduler is built with {warmup_steps} warmup steps and {gpc.config.DECAY_ITERS} decay steps") # # init engine, *dummy = colossalai.initialize(model, optimizer, criterion, verbose=True) # build timer timer = MultiTimer() skip_iters = 0 # build loss tracker accumulated_train_loss = torch.zeros(1, dtype=torch.float32).cuda() accumulated_eval_loss = torch.zeros(1, dtype=torch.float32).cuda() # build data iters for pipeline parallel if use_pipeline: train_data_iter = SequenceParallelDataIterator(trainloader) valid_data_iter = SequenceParallelDataIterator(validloader) engine.schedule.data_process_func = pipeline_data_process_func logger.info("start training") for step in range(1, gpc.config.TRAIN_ITERS + 1): timer.start('train-iterations') engine.train() if use_pipeline: engine.zero_grad() _, _, train_loss = engine.execute_schedule(train_data_iter, return_output_label=False) engine.step() else: tokens, types, sentence_order, loss_mask, lm_labels, padding_mask = get_batch_for_sequence_parallel( trainloader) engine.zero_grad() lm_loss, sop_output = engine(tokens, padding_mask, types, lm_labels) train_loss = engine.criterion(lm_loss, sop_output, loss_mask, sentence_order) engine.backward(train_loss) engine.step() timer.stop('train-iterations', keep_in_history=True) if not gpc.is_initialized(ParallelMode.PIPELINE) or gpc.is_last_rank(ParallelMode.PIPELINE): accumulated_train_loss += train_loss lr_scheduler.step() if step % gpc.config.EVAL_INTERVAL == 0: engine.eval() for j in range(gpc.config.EVAL_ITERS): with torch.no_grad(): if use_pipeline: _, _, eval_loss = engine.execute_schedule(valid_data_iter, forward_only=True, return_output_label=False) else: tokens, types, sentence_order, loss_mask, lm_labels, padding_mask = get_batch_for_sequence_parallel( validloader) lm_loss, sop_output = engine(tokens, padding_mask, types, lm_labels) eval_loss = engine.criterion(lm_loss, sop_output, loss_mask, sentence_order) if not gpc.is_initialized(ParallelMode.PIPELINE) or gpc.is_last_rank(ParallelMode.PIPELINE): accumulated_eval_loss += eval_loss if not gpc.is_initialized(ParallelMode.PIPELINE) or gpc.is_last_rank(ParallelMode.PIPELINE): accumulated_eval_loss /= gpc.config.EVAL_ITERS accumulated_train_loss /= gpc.config.EVAL_INTERVAL timer_string = [] for n, t in timer: timer_string.append(f"{n}: {t.get_history_mean()*1000:.5f}") timer_string = ' | '.join(timer_string) lr = list(engine.optimizer.param_groups)[0]['lr'] loss_scale = engine.optimizer.optim.loss_scale.item() if gpc.is_initialized(ParallelMode.PIPELINE): ranks = [gpc.get_ranks_in_group(ParallelMode.PIPELINE)[-1]] else: ranks = [0] logger.info(f'Step {step} / {gpc.config.TRAIN_ITERS} | Train Loss: {accumulated_train_loss.item():.5g} ' + f'| Eval Loss: {accumulated_eval_loss.item():.5g} ' + f'| Loss Scale: {loss_scale}' + f"| Learning rate: {lr} | " + timer_string, ranks=ranks) for n, t in timer: t.reset() accumulated_eval_loss.zero_() accumulated_train_loss.zero_() if __name__ == '__main__': main()