import gzip from contextlib import nullcontext from functools import partial from time import time import numpy as np import torch import torch.nn as nn import torch.optim as optim import tqdm from palm_pytorch import PaLM from palm_pytorch.autoregressive_wrapper import AutoregressiveWrapper from torch.utils.data import DataLoader, Dataset import colossalai from colossalai.booster import Booster from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin from colossalai.lazy import LazyInitContext from colossalai.logging import disable_existing_loggers, get_dist_logger from colossalai.nn import HybridAdam from colossalai.utils import get_current_device # constants NUM_BATCHES = int(10) WARMUP_BATCHES = 1 GRADIENT_ACCUMULATE_EVERY = 1 LEARNING_RATE = 2e-4 VALIDATE_EVERY = 100 GENERATE_EVERY = 500 GENERATE_LENGTH = 512 SEQ_LEN = 1024 def parse_args(): parser = colossalai.get_default_parser() parser.add_argument( "--distplan", type=str, default='colossalai', help="The distributed plan [colossalai, pytorch].", ) parser.add_argument( "--offload_optim_frac", type=float, default=1.0, help="Fraction of optimizer states to be offloaded. This is only used for gemini.", ) parser.add_argument('-p', '--plugin', type=str, default='torch_ddp', choices=['torch_ddp', 'torch_ddp_fp16', 'gemini', 'low_level_zero'], help="plugin to use") parser.add_argument( "--batch_size", type=int, default=8, help="batch size per DP group of training.", ) parser.add_argument( "--dummy_data", type=bool, default=False, help="use dummy dataset.", ) args = parser.parse_args() return args # helpers def cycle(loader): while True: for data in loader: yield data def decode_token(token): return str(chr(max(32, token))) def get_tflops(model_numel, batch_size, seq_len, step_time): return model_numel * batch_size * seq_len * 8 / 1e12 / (step_time + 1e-12) def decode_tokens(tokens): return "".join(list(map(decode_token, tokens))) def get_model_size(model: nn.Module): total_numel = 0 for module in model.modules(): for p in module.parameters(recurse=False): total_numel += p.numel() return total_numel args = parse_args() if args.distplan not in ["colossalai", "pytorch"]: raise TypeError(f"{args.distplan} is error") disable_existing_loggers() colossalai.launch_from_torch(config={}) logger = get_dist_logger() def generate_dataset(dummy_data: bool = False): if not dummy_data: with gzip.open("./data/enwik8.gz") as file: X = np.fromstring(file.read(int(95e6)), dtype=np.uint8) trX, vaX = np.split(X, [int(90e6)]) data_train, data_val = torch.from_numpy(trX), torch.from_numpy(vaX) # print(f"data_train {data_train.shape} {data_train.dtype} {max(data_train)} {min(data_train)}") # print(f"data_val {data_val.shape} {data_val.dtype} {max(data_val)} {min(data_val)}") return data_train, data_val else: return torch.randint(0, 100, (90000000,)), torch.randint(0, 100, (5000000,)) data_train, data_val = generate_dataset(args.dummy_data) print("generate dataset ready!") class TextSamplerDataset(Dataset): def __init__(self, data, seq_len): super().__init__() self.data = data self.seq_len = seq_len def __getitem__(self, index): rand_start = torch.randint(0, self.data.size(0) - self.seq_len, (1,)) full_seq = self.data[rand_start:rand_start + self.seq_len + 1].long() return full_seq.cuda() def __len__(self): return self.data.size(0) // self.seq_len train_dataset = TextSamplerDataset(data_train, SEQ_LEN) val_dataset = TextSamplerDataset(data_val, SEQ_LEN) train_loader = cycle(DataLoader(train_dataset, batch_size=args.batch_size)) val_loader = cycle(DataLoader(val_dataset, batch_size=args.batch_size)) if args.distplan == "colossalai": # instantiate GPT-like decoder model booster_kwargs = {} if args.plugin == 'torch_ddp_fp16': booster_kwargs['mixed_precision'] = 'fp16' if args.plugin.startswith('torch_ddp'): plugin = TorchDDPPlugin() elif args.plugin == 'gemini': plugin = GeminiPlugin(offload_optim_frac=args.offload_optim_frac, initial_scale=2**5) elif args.plugin == 'low_level_zero': plugin = LowLevelZeroPlugin(initial_scale=2**5) logger.info(f"plugin: {plugin}") booster = Booster(plugin=plugin, **booster_kwargs) ctx = LazyInitContext(default_device=get_current_device()) if args.plugin == 'gemini' else nullcontext() with ctx: model = PaLM(num_tokens=50304, dim=4096, depth=64) model = AutoregressiveWrapper(model, max_seq_len=SEQ_LEN) # optimizer optimizer = HybridAdam(model.parameters(), lr=LEARNING_RATE, initial_scale=2**5) model, optimizer, _, _, _ = booster.boost(model, optimizer) else: model = PaLM(num_tokens=256, dim=512, depth=8) model = AutoregressiveWrapper(model, max_seq_len=2048) model.cuda() optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) # model is shared after TP numel = get_model_size(model) get_tflops_func = partial(get_tflops, numel, args.batch_size, SEQ_LEN) # training model.train() tflops_list = [] for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10.0, desc="training"): if args.distplan == "colossalai": optimizer.zero_grad() start = time() loss = model(next(train_loader)) fwd_end = time() fwd_time = fwd_end - start # loss.backward() optimizer.backward(loss) bwd_end = time() bwd_time = bwd_end - fwd_end # print(f"training loss: {loss.item()}") torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) # optim.step() # optim.zero_grad() optimizer.step() optim_time = time() - bwd_end step_time = time() - start step_tflops = get_tflops_func(step_time) logger.info( f"[{i + 1}/{NUM_BATCHES}] Loss:{loss.item():.3f}, Step time: {step_time:.3f}s, TFLOPS: {get_tflops_func(step_time):.3f}, FWD time: {fwd_time:.3f}s, BWD time: {bwd_time:.3f}s, OPTIM time: {optim_time:.3f}s", ranks=[0], ) if i >= WARMUP_BATCHES: tflops_list.append(step_tflops) else: for __ in range(GRADIENT_ACCUMULATE_EVERY): loss = model(next(train_loader)) loss.backward() print(f"training loss: {loss.item()}") torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) optim.step() optim.zero_grad() tflops_list.sort() median_index = ((NUM_BATCHES - WARMUP_BATCHES) >> 1) + WARMUP_BATCHES logger.info(f"Median TFLOPS is {tflops_list[median_index]:.3f}") # TODO # if i % VALIDATE_EVERY == 0: # model.eval() # with torch.no_grad(): # loss = model(next(val_loader)) # print(f"validation loss: {loss.item()}") # if i % GENERATE_EVERY == 0: # model.eval() # inp = random.choice(val_dataset)[:-1] # prime = decode_tokens(inp) # print(f"%s \n\n %s", (prime, "*" * 100)) # sample = model.generate(inp[None, ...], GENERATE_LENGTH) # output_str = decode_tokens(sample[0]) # print(output_str)