#!/usr/bin/env python # -*- encoding: utf-8 -*- import math import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import Parameter import colossalai from colossalai.context import seed from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.kernel import FusedScaleMaskSoftmax from colossalai.kernel.cuda_native.scaled_softmax import AttnMaskType from colossalai.legacy.nn.layer.parallel_sequence._operation import RingAV, RingQK from colossalai.legacy.registry import LAYERS @LAYERS.register_module class TransformerSelfAttentionRing(nn.Module): """Parallel self-attention layer abstract class. Self-attention layer takes input with size [b, s, h] and returns output of the same size. Args: hidden_size (int): hidden size. num_attention_heads (int): number of attention heads. attention_dropout (float): dropout probability for attention layer. attention_mask_func (:class:`typing.Callable`): Mask function to be applied. layer_number (int): number of layers. """ def __init__(self, hidden_size, num_attention_heads, attention_dropout, attention_mask_func, layer_number, apply_query_key_layer_scaling: bool = False, convert_fp16_to_fp32_in_softmax: bool = False, attn_mask_type=AttnMaskType.padding, masked_softmax_fusion=True, fp16=False, bf16=False): super().__init__() self.convert_fp16_to_fp32_in_softmax = convert_fp16_to_fp32_in_softmax self.apply_query_key_layer_scaling = apply_query_key_layer_scaling self.attention_mask_func = attention_mask_func self.layer_number = layer_number self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads self.attn_mask_type = attn_mask_type assert self.layer_number > 0 self.attention_dropout = attention_dropout if self.apply_query_key_layer_scaling: self.convert_fp16_to_fp32_in_softmax = True assert self.hidden_size % self.num_attention_heads == 0, \ 'hidden size is not divisible by the number of attention heads' self.hidden_size_per_attention_head = self.hidden_size // num_attention_heads self.world_size = gpc.get_world_size(ParallelMode.SEQUENCE) # Strided linear layer. self.query_key_value = _Linear( hidden_size, 3 * self.hidden_size, ) self.coeff = None self.norm_factor = math.sqrt(self.hidden_size) if self.apply_query_key_layer_scaling: self.coeff = layer_number self.norm_factor *= self.coeff self.scale_mask_softmax = FusedScaleMaskSoftmax(fp16, bf16, self.attn_mask_type, masked_softmax_fusion, self.attention_mask_func, self.convert_fp16_to_fp32_in_softmax, self.coeff) self.attention_dropout = nn.Dropout(attention_dropout) # Output. self.dense = _Linear(hidden_size, hidden_size, bias=True, skip_bias_add=True) def forward(self, hidden_states, attention_mask): # hidden_states: [sub_seq_len, batch_size, hidden_size] # attention_mask: [batch_size, 1, sub_seq_len, seq_len] sub_seq_length, batch_size, hidden_size = hidden_states.size() # ===================== # Query, Key, and Value # ===================== # Attention heads shape change: # [sub_seq_len, batch_size, hidden_size] --> [sub_seq_len, batch_size, (3 * head_size * num_heads)] mixed_x_layer = self.query_key_value(hidden_states) # [sub_seq_len, batch_size, num_heads, 3 * head_size] --> 3 [sub_seq_len, batch_size, num_heads, head_size] new_tensor_shape = mixed_x_layer.size()[:-1] + (self.num_attention_heads, 3 * self.hidden_size_per_attention_head) mixed_x_layer = mixed_x_layer.view(*new_tensor_shape) # split into query, key and value last_dim = mixed_x_layer.dim() - 1 last_dim_value = mixed_x_layer.size(-1) assert last_dim_value % 3 == 0, 'the last dimension is not a multiple of 3, ' \ 'cannot be divided into query, key and value' partition_size = last_dim_value // 3 (query_layer, key_layer, value_layer) = torch.split(mixed_x_layer, partition_size, dim=last_dim) # attention scores: [batch_size, num_heads, sub_seq_len, seq_len] output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0) * self.world_size) # [sub_seq_len, batch_size, num_heads, head_size] -> [sub_seq_len, batch_size * num_heads, head_size] query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1) # [sub_seq_len, batch_size, num_heads, head_size] -> [sub_seq_len, batch_size * num_heads, head_size] key_layer = key_layer.view(key_layer.size(0), output_size[0] * output_size[1], -1) # attention_scores: [batch_size * num_heads, sub_seq_len, seq_len] attention_scores = RingQK.apply( query_layer.transpose(0, 1).contiguous(), # [batch_size * num_heads, sub_seq_len, head_size] key_layer.transpose(0, 1).contiguous(), # [batch_size * num_heads, sub_seq_len, head_size], batch_size, self.num_attention_heads, sub_seq_length) attention_scores /= self.norm_factor # change view to [batch_size, num_heads, sub_seq_len, seq_len] attention_scores = attention_scores.view(*output_size) # change shape to [batch_size, num_heads, sub_seq_len, seq_len] attention_probs = self.scale_mask_softmax(attention_scores, attention_mask) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. with seed(ParallelMode.TENSOR): attention_probs = self.attention_dropout(attention_probs) # context layer shape: [batch_size, num_heads, sub_seq_len, head_size] output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3)) # change view [sub_seq_len, batch_size * num_heads, head_size] value_layer = value_layer.contiguous().view(value_layer.size(0), output_size[0] * output_size[1], -1) # # change view [b * num_heads, sub_seq_len, seq_len] attention_probs = attention_probs.view( attention_probs.size(0) * attention_probs.size(1), attention_probs.size(2), attention_probs.size(3)) # matmul: [batch_size * num_heads, sub_seq_len, head_size] context_layer = RingAV.apply(attention_probs, value_layer.transpose(0, 1).contiguous(), batch_size, self.num_attention_heads, self.hidden_size_per_attention_head, sub_seq_length) # change view [batch_size, num_heads, sub_seq_len, head_size] context_layer = context_layer.view(*output_size) # [batch_size, num_heads, sub_seq_len, head_size] -> [sub_seq_len, batch_size, num_heads, head_size] context_layer = context_layer.permute(2, 0, 1, 3).contiguous() # [sub_seq_len, batch_size, num_heads, head_size] -> [sub_seq_len, batch_size, hidden_size] new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_attention_head * self.num_attention_heads,) context_layer = context_layer.view(*new_context_layer_shape) output, bias = self.dense(context_layer) return output, bias def __repr__(self): return f'TransformerSelfAttentionRing(apply_query_key_layer_scaling={self.apply_query_key_layer_scaling}, ' \ f'layer_number={self.layer_number}, hidden_size:{self.hidden_size}, attention_dropout={self.attention_dropout}, ' \ f'attn_mask_type={self.attn_mask_type}, num_attention_heads={self.num_attention_heads}, ' \ f'hidden_size_per_attention_head={self.hidden_size_per_attention_head}, coeff={self.coeff}, norm_factor={self.norm_factor}, ' \ f'convert_fp16_to_fp32_in_softmax={self.convert_fp16_to_fp32_in_softmax})' class _Linear(nn.Module): """Linear layer with column parallelism. The linear layer is defined as Y = XA + b. A is parallelized along its second dimension as A = [A_1, ..., A_p]. Arguments: input_size: first dimension of matrix A. output_size: second dimension of matrix A. bias: If true, add bias init_method: method to initialize weights. Note that bias is always set to zero. stride: For the strided linear layers. keep_master_weight_for_test: This was added for testing and should be set to False. It returns the master weights used for initialization. skip_bias_add: This was added to enable performance optimizations where bias can be fused with other elementwise operations. we skip adding bias but instead return it. """ def __init__(self, input_size, output_size, bias=True, skip_bias_add=False): super(_Linear, self).__init__() # Keep input parameters self.input_size = input_size self.output_size = output_size self.skip_bias_add = skip_bias_add self.weight = Parameter(torch.empty( self.output_size, self.input_size, )) nn.init.xavier_normal_(self.weight) if bias: self.bias = Parameter(torch.empty(self.output_size)) # Always initialize bias to zero. with torch.no_grad(): self.bias.zero_() else: self.register_parameter('bias', None) def forward(self, input_): # Matrix multiply. bias = self.bias if not self.skip_bias_add else None output = F.linear(input_, self.weight, bias) if self.skip_bias_add: return output, self.bias else: return output def __repr__(self): return f'Linear(in_features={self.input_size}, out_features={self.output_size}, ' + \ f'bias={self.bias is not None}, skip_bias_add={self.skip_bias_add})'