""" Utils for model inference """ import math import os import re from pathlib import Path from typing import Optional, Tuple import torch from torch import nn from colossalai.logging import get_dist_logger from colossalai.testing import free_port logger = get_dist_logger(__name__) def init_to_get_rotary(self, base=10000, use_elem=False): """ This function initializes the rotary positional embedding, it is compatible for all models and is called in ShardFormer Args: self : Model that holds the rotary positional embedding base : calculation arg use_elem : activated when using chatglm-based models """ self.config.head_dim_ = self.config.hidden_size // self.config.num_attention_heads if not hasattr(self.config, "rope_scaling"): rope_scaling_factor = 1.0 else: rope_scaling_factor = self.config.rope_scaling.factor if self.config.rope_scaling is not None else 1.0 if hasattr(self.config, "max_sequence_length"): max_seq_len = self.config.max_sequence_length elif hasattr(self.config, "max_position_embeddings"): max_seq_len = self.config.max_position_embeddings * rope_scaling_factor else: max_seq_len = 2048 * rope_scaling_factor base = float(base) # NTK ref: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/ ntk_alpha = os.environ.get("INFER_NTK_ALPHA", None) if ntk_alpha is not None: ntk_alpha = float(ntk_alpha) assert ntk_alpha >= 1, "NTK alpha must be greater than or equal to 1" if ntk_alpha > 1: print(f"Note: NTK enabled, alpha set to {ntk_alpha}") max_seq_len *= ntk_alpha base = base * (ntk_alpha ** (self.head_dim_ / (self.head_dim_ - 2))) # Base change formula n_elem = self.config.head_dim_ if use_elem: n_elem //= 2 inv_freq = 1.0 / (base ** (torch.arange(0, n_elem, 2, device="cpu", dtype=torch.float32) / n_elem)) t = torch.arange(max_seq_len + 1024 * 64, device="cpu", dtype=torch.float32) / rope_scaling_factor freqs = torch.outer(t, inv_freq) self._cos_cached = torch.cos(freqs).to(self.dtype).cuda() self._sin_cached = torch.sin(freqs).to(self.dtype).cuda() def has_index_file(checkpoint_path: str) -> Tuple[bool, Optional[Path]]: """ Check whether the checkpoint has an index file. Args: checkpoint_path (str): path to the checkpoint. Returns: Tuple[bool, Optional[Path]]: a tuple of (has_index_file, index_file_path) """ checkpoint_path = Path(checkpoint_path) if checkpoint_path.is_file(): # check if it is .index.json reg = re.compile("(.*?).index((\..*)?).json") if reg.fullmatch(checkpoint_path.name) is not None: return True, checkpoint_path else: return False, None elif checkpoint_path.is_dir(): index_files = list(checkpoint_path.glob("*.index.*json")) for index_file in index_files: if "safetensors" in index_file.__str__(): return True, index_file.__str__() # return the safetensors file first if len(index_files) == 1: return True, index_files[0] else: assert ( len(index_files) == 1 ), f"Expected to find one .index.json file in {checkpoint_path}, but found {len(index_files)}" return False, None else: raise RuntimeError(f"Invalid checkpoint path {checkpoint_path}. Expected a file or a directory.") def get_model_size(model: nn.Module): """Calculates the total size of the model weights (including biases) in bytes. Args: model: The PyTorch model to analyze. Returns: The total size of the model weights in bytes. """ total_size = 0 for key, param in model.named_parameters(): total_size += param.element_size() * param.numel() return total_size / (1024**3) def find_available_ports(num: int): try: free_ports = [free_port() for i in range(num)] except OSError as e: print(f"An OS error occurred: {e}") raise RuntimeError("Error finding available ports") return free_ports def get_alibi_slopes(num_heads: int, device: torch.device) -> torch.Tensor: """ Alibi slopes calculation adapted from https://github.com/huggingface/transformers/blob/v4.36.0/src/transformers/models/bloom/modeling_bloom.py#L57 Args: num_heads (int): The number of attention heads. device (torch.device): The device to use. Returns: torch.Tensor: The Alibi slopes. """ closest_power_of_2 = 2 ** math.floor(math.log2(num_heads)) base = torch.tensor(2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), dtype=torch.float32, device=device) powers = torch.arange(1, 1 + closest_power_of_2, dtype=torch.int32, device=device) slopes = torch.pow(base, powers) if closest_power_of_2 != num_heads: extra_base = torch.tensor( 2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), dtype=torch.float32, device=device ) num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2) extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, dtype=torch.int32, device=device) slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0) return slopes def can_use_flash_attn2(dtype: torch.dtype) -> bool: """ Check flash attention2 availability. """ if dtype not in (torch.float16, torch.bfloat16): return False try: from flash_attn import flash_attn_varlen_func # noqa return True except ImportError: logger.warning(f"flash_attn2 has not been installed yet, we will use triton flash attn instead.") return False