import concurrent.futures import os import re import time from copy import deepcopy from typing import Any, Dict, List import matplotlib.pyplot as plt import numpy as np import openai import pandas as pd import seaborn as sns import tqdm from utils import jdump, jload def get_battle_result(sys_prompt: str, user_prompt: str, id: int, max_tokens: int = 2048) -> Dict[str, Any]: """ Get battle evaluation from GPT-4. Args: sys_prompt: prompt for the system. user_prompt: prompt for the user. id: id of the answers for comparison. max_tokens: the maximum number of tokens to generate in the chat completion. Returns: An evaluation of one comparison. """ MAX_API_RETRY = 3 for _ in range(MAX_API_RETRY): try: response = openai.ChatCompletion.create( model="gpt-4", messages=[ { "role": "system", "content": sys_prompt }, { "role": "user", "content": user_prompt, }, ], temperature=0.2, max_tokens=max_tokens, ) evaluation = response["choices"][0]["message"]["content"] return {"evaluation": evaluation, "id": id} except Exception as e: print(e) time.sleep(1) print(f"Evaluation {id} failed after {MAX_API_RETRY} retries.") return {"evaluation": "", "id": id} def parse_battle_score(evaluation: str) -> List[float]: """ Parse evaluation from GPT-4 and get the scores of model 1 and 2. Args: evaluation: evaluation from GPT-4. Returns: A score pair of two different model answers. """ try: pattern = re.compile("([0-9]|10) out of 10") sp = re.findall(pattern, evaluation) if len(re.findall(pattern, evaluation)) == 2: return [float(sp[0]), float(sp[1])] pattern = re.compile("a score of ([0-9]|10)") sp = re.findall(pattern, evaluation) if len(re.findall(pattern, evaluation)) == 2: return [float(sp[0]), float(sp[1])] pattern = re.compile("([0-9]|10)/10") sp = re.findall(pattern, evaluation) if len(re.findall(pattern, evaluation)) == 2: return [float(sp[0]), float(sp[1])] score_pair = evaluation.split("\n")[0] score_pair = score_pair.replace(",", " ") sp = score_pair.split(" ") if len(sp) == 2: return [float(sp[0]), float(sp[1])] else: raise Exception(f"Invalid score pair. Got {evaluation}.") except Exception as e: return [-1, -1] def battle(answer1: List[Dict], answer2: List[Dict], prompt_dict: Dict[str, Any]) -> List[Dict]: """ Use GPT-4 to compare answers of two different models. Args: answer1: answers of model 1. answer2: answers of model 2. prompt_dict: prompt for battle. Returns: Evaluations of all comparison pairs. """ assert len(answer1) == len(answer2) handles = [] evaluation_file = [] total_len = len(answer1) question_idx_list = list(range(total_len)) print(f" Total number of answers: {len(answer1)}.") evaluations = [] with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor: futures = [] for i in question_idx_list: assert answer1[i]["id"] == answer2[i]["id"] answer_id = answer1[i]["id"] ques = answer1[i]["instruction"] if answer1[i][ "input"] == "" else answer1[i]["instruction"] + " " + answer1[i]["input"] cat = answer1[i]["category"] ans1 = answer1[i]["output"] ans2 = answer2[i]["output"] sys_prompt = prompt_dict["system_prompt"] prompt_template = prompt_dict["prompt_template"] prompt = prompt_template.format( question=ques, answer_1=ans1, answer_2=ans2, prompt=prompt_dict["prompt"], ) future = executor.submit(get_battle_result, sys_prompt, prompt, answer_id, 2048) futures.append(future) for future in tqdm.tqdm(concurrent.futures.as_completed(futures), total=len(futures)): evaluations.append(future.result()) evaluations.sort(key=lambda x: x["id"]) return evaluations def save_battle_results(evaluations: List[Dict], name1: str, name2: str, save_path: str) -> None: """ Save evaluation results (model 1 vs model 2) from GPT-4. Args: evaluations: evaluation results from GPT-4. name1: model 1 's name. name2: model 2 's name. save_path: path to save battle results. """ evaluation_file = deepcopy(evaluations) ans1_score = 0 ans2_score = 0 better_count = 0 worse_count = 0 tie_count = 0 invalid_count = 0 better_file = [] worse_file = [] tie_file = [] invalid_file = [] for idx, evaluation in enumerate(evaluations): scores = parse_battle_score(evaluation["evaluation"]) evaluation_file[idx]["score"] = scores if scores[0] == -1 and scores[1] == -1: invalid_count += 1 invalid_file.append(evaluation_file[idx]) print(f'Invalid score pair: {evaluation_file[idx]["id"]}.') else: if scores[0] > scores[1]: worse_count += 1 worse_file.append(evaluation_file[idx]) elif scores[0] < scores[1]: better_count += 1 better_file.append(evaluation_file[idx]) else: tie_count += 1 tie_file.append(evaluation_file[idx]) ans1_score += scores[0] ans2_score += scores[1] prefix = f"{name1}_vs_{name2}" if not os.path.exists(save_path): os.makedirs(save_path) jdump(better_file, os.path.join(save_path, prefix, f"{name2}_better.json")) jdump(worse_file, os.path.join(save_path, prefix, f"{name2}_worse.json")) jdump(tie_file, os.path.join(save_path, prefix, f"{prefix}_tie.json")) jdump(invalid_file, os.path.join(save_path, prefix, f"{prefix}_invalid.json")) jdump(evaluation_file, os.path.join(save_path, prefix, f"{prefix}_evaluations.json")) if os.path.exists(os.path.join(save_path, "battle_results.json")): results = jload(os.path.join(save_path, "battle_results.json")) else: results = {} results[prefix] = { "model": [name1, name2], "better": better_count, "worse": worse_count, "tie": tie_count, "win_rate": better_count / (len(evaluations) - invalid_count), "score": [ ans1_score / (len(evaluations) - invalid_count), ans2_score / (len(evaluations) - invalid_count), ], } jdump(results, os.path.join(save_path, "battle_results.json")) print(f"Total {invalid_count} invalid score pair(s).") print(f"Model {name2} has {better_count} better answer(s).") print(f"Model {name2} has {worse_count} worse answer(s).") print(f"{tie_count} answer(s) play(s) to a tie.") print(f"Win rate of model {name2}: {better_count/(len(evaluations)-invalid_count):.2f}") print(f"Model {name1} average score: {ans1_score/(len(evaluations)-invalid_count):.2f}") print(f"Model {name2} average score: {ans2_score/(len(evaluations)-invalid_count):.2f}") def get_gpt_evaluation_without_logprobs(prompt: Dict[str, Any], inst: Dict[str, Any], metrics: List[str], model: str = "gpt-3.5-turbo", max_tokens: int = 2048) -> Dict[str, Any]: """ Use chat models(gpt-3.5-turbo or gpt-4) to evaluate one model answer. Args: prompt: a dictionary including prompt template, CoT and metrics. inst: the instruction that is needed to be evaluated. metrics: the metrics for evaluation. model: the model used to evaluate answers. max_tokens: the maximum number of tokens to generate in the chat completion. Returns: An evaluation of one answer. """ MAX_API_RETRY = 3 question = (inst["instruction"] if inst["input"] == "" else inst["instruction"] + " " + inst["input"]) answer = inst["output"] inst["evaluation"] = {} for metric in metrics: if prompt["metrics"].get(metric, None) is None: raise Exception( f"Unsupported metric {metric} for category {inst['category']}! You should add this metric in the prompt file!" ) for i in range(MAX_API_RETRY): try: response = openai.ChatCompletion.create( model=model, messages=[ { "role": "user", "content": prompt["prompt"].format( question=question, answer=answer, metric=prompt["metrics"][metric], steps=prompt["CoT"][metric], ), }, ], temperature=0, max_tokens=max_tokens, ) inst["evaluation"][metric] = { "response": response["choices"][0]["message"]["content"], "logprobs": None, } break except Exception as e: print(e) time.sleep(1) if metric not in inst["evaluation"]: print(f"Evaluation {inst['id']} for metric {metric} failed after {MAX_API_RETRY} retries.") inst["evaluation"][metric] = {} return inst def get_gpt_evaluation_with_logprobs(prompt: Dict[str, Any], inst: Dict[str, Any], metrics: List[str], max_tokens: int = 2048) -> Dict[str, Any]: """ Use completion model(text-davinci-003) to evaluate one model answer. Only completion models can return log probabilities. Args: prompt: a dictionary including prompt template, CoT and metrics. inst: the instruction that is needed to be evaluated. metrics: the metrics for evaluation. max_tokens: the maximum number of tokens to generate in the completion. Returns: An evaluation of one answer. """ MAX_API_RETRY = 3 question = (inst["instruction"] if inst["input"] == "" else inst["instruction"] + " " + inst["input"]) answer = inst["output"] inst["evaluation"] = {} for metric in metrics: if prompt["metrics"].get(metric, None) is None: raise Exception( f"Unsupported metric {metric} for category {inst['category']}! You should add this metric in the prompt file!" ) for i in range(MAX_API_RETRY): try: response = openai.Completion.create( model="text-davinci-003", prompt=prompt["prompt"].format( question=question, answer=answer, metric=prompt["metrics"][metric], steps=prompt["CoT"][metric], ), logprobs=5, temperature=0, max_tokens=max_tokens, ) inst["evaluation"][metric] = { "response": response["choices"][0]["text"], "logprobs": response["choices"][0]["logprobs"]["top_logprobs"], } break except Exception as e: print(e) time.sleep(1) if metric not in inst["evaluation"]: print(f"Evaluation {inst['id']} for metric {metric} failed after {MAX_API_RETRY} retries.") inst["evaluation"][metric] = {} return inst def evaluate(answers: List[Dict], prompt: Dict[str, Any], metrics: List[str], category: str, model: str) -> List[Dict]: """ Use GPT models to evaluate model answers and save evaluation results. Args: answers: model answers. prompt: prompt for GPT evaluation. metrics: metrics for GPT evaluation. category: the category of the model answers for evaluation. model: the specific GPT model used to evaluate answers. Returns: Evaluations of the given answers. """ print(f"The number of instances of category {category}'s is {len(answers)}.") evaluations = [] metrics_str = ", ".join(x for x in metrics) print(f"Category {category}'s metrics are {metrics_str}.") with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor: futures = [] for inst in answers: # Completion models can return log probabilities. if model == "text-davinci-003": future = executor.submit(get_gpt_evaluation_with_logprobs, prompt, inst, metrics, 1) else: future = executor.submit(get_gpt_evaluation_without_logprobs, prompt, inst, metrics, model, 1) futures.append(future) for future in tqdm.tqdm( concurrent.futures.as_completed(futures), desc=f"{category}: ", total=len(futures), ): evaluations.append(future.result()) evaluations.sort(key=lambda x: x["id"]) print(f"{category} done.") return evaluations def calculate_scores_form_logprobs(logprobs: Dict[str, Any]) -> float: """ Calculate the score according to log probabilities returned by text-davinci-003. Calculation formula: score = sum(score_i * exp(value)) where score_i is the score which corresponds to the key(predicted token) and value is its log probability. Ref: https://arxiv.org/abs/2303.16634 This paper proposes NLG evaluation methods using text-davinci-003(log probabilities returned by completion models) and GPT-4(probabilities obtained by sampling). Args: logprobs: logprobs returned by openai.Completion. Returns: The score of one answer. """ # GPT-3.5 only returns score of 1 to 5. prob = np.zeros(5) for key, value in logprobs.items(): # Sometimes the key will be one byte of a unicode character which takes the form of "bytes:\\xe7". # It is meaningless and thus we don't calculate probability. if "bytes" in key: continue # results[0] is the score which corresponds to the key(predicted token). # For example, key "5" corresponds to score 5. results = re.findall(r"\d", key) if len(results) == 1: prob[int(results[0]) - 1] = prob[int(results[0]) - 1] + np.exp(value) score = np.dot(np.arange(1, 6), prob) return score def calculate_scores_form_response(response: str, evaluation: Dict[str, Any]) -> int: """ Calculate the score from the response returned by gpt-3.5-turbo or gpt-4. Different from text-davinci-003, this fuction directly calculates the score according to the plain response returned by gpt-3.5-turbo or gpt-4. Although text-davinci-003 can return log probabilities, it costs ten times as much as gpt-3.5-turbo. Args: response: logprobs returned by openai.Completion. evaluation: the evaluation corresponds to the question. Returns: The score of one answer. """ try: results = re.findall(r"\d", response) if len(results) == 1: return int(results[0]) else: raise Exception(f"Invalid score pair. Got {evaluation}.") except Exception as e: return 0 def save_gpt_evaluation_results(model_name: str, gpt_evaluation_results: Dict[str, Any], save_path: str) -> Dict[str, Any]: """ Save evaluation results for different categories for one model. Args: model_name: name of the model for saving evaluation results. gpt_evaluation_results: evaluations results for all of the model answers. save_path: path to save GPT evaluation statistics. """ all_evaluations = [] for category, evaluations in gpt_evaluation_results.items(): jdump(evaluations, os.path.join(save_path, model_name, f"{category}_evaluation_results.json")) all_evaluations.extend(evaluations) jdump(all_evaluations, os.path.join(save_path, f"{model_name}_evaluation_results.json")) return all_evaluations def save_gpt_evaluation_statistics(model_name: str, evaluations: List[Dict], save_path: str) -> None: """ Generate statistics for one model. Args: model_name: name of the model for saving statistics. evaluations: evaluations for all of the model answers. save_path: path to save GPT evaluation statistics. """ if not os.path.exists(save_path): os.makedirs(save_path) data_per_category = {} for evaluation in evaluations: category = evaluation["category"] if evaluation["category"] in data_per_category.keys(): data_per_category[category].append(evaluation) else: data_per_category[category] = [evaluation] all_statistics = {} for category, data in data_per_category.items(): metrics = data[0]["evaluation"].keys() scores = {metric: [] for metric in metrics} for evaluation in data: for metric in metrics: if evaluation["evaluation"][metric] == {}: # This means after 3 retries, the server still returns an error and we set the score to 0. scores[metric].append(0) elif evaluation["evaluation"][metric]["logprobs"] is not None: scores[metric].append( calculate_scores_form_logprobs(evaluation["evaluation"][metric]["logprobs"][0])) else: scores[metric].append( calculate_scores_form_response(evaluation["evaluation"][metric]["response"], evaluation)) statistics = {} for metric in metrics: arg_sort = np.argsort(scores[metric]) statistics[metric] = {} statistics[metric]["avg_score"] = sum(scores[metric]) / len(data) statistics[metric]["best_3"] = {data[i]["id"]: scores[metric][i] for i in arg_sort[-3:][::-1]} statistics[metric]["worst_3"] = {data[i]["id"]: scores[metric][i] for i in arg_sort[:3]} all_statistics[category] = statistics jdump( all_statistics, os.path.join(save_path, f"{model_name}_evaluation_statistics.json"), ) def analyze_gpt_evaluation_statistics(statistics_path: str, save_path: str) -> None: """ Analyze and visualize all GPT evaluation statistics in the given directory. Args: statistics_path: path to all the models' statistics. save_path: path to save table and visualization results. """ if not os.path.exists(statistics_path): raise Exception(f'The given directory "{statistics_path}" doesn\'t exist! No statistics found!') all_statistics = {} for file_name in os.listdir(statistics_path): if file_name.endswith("_evaluation_statistics.json"): model_name = file_name.split("_evaluation_statistics.json")[0] all_statistics[model_name] = jload(os.path.join(statistics_path, file_name)) if len(list(all_statistics.keys())) == 0: raise Exception(f'There are no statistics in the given directory "{statistics_path}"!') frame_all = { "model": [], "category": [], "metric": [], "avg_score": [], "best_3": [], "worst_3": [], } frame_per_category = {} for model_name, model_statistics in all_statistics.items(): for category, category_statistics in model_statistics.items(): if frame_per_category.get(category) is None: frame_per_category[category] = { "model": [], "metric": [], "avg_score": [], "best_3": [], "worst_3": [], } for metric, metric_statistics in category_statistics.items(): frame_all["model"].append(model_name) frame_all["category"].append(category) frame_all["metric"].append(metric) frame_all["avg_score"].append(metric_statistics["avg_score"]) frame_all["best_3"].append(metric_statistics["best_3"]) frame_all["worst_3"].append(metric_statistics["worst_3"]) frame_per_category[category]["model"].append(model_name) frame_per_category[category]["metric"].append(metric) frame_per_category[category]["avg_score"].append(metric_statistics["avg_score"]) frame_per_category[category]["best_3"].append(metric_statistics["best_3"]) frame_per_category[category]["worst_3"].append(metric_statistics["worst_3"]) if not os.path.exists(save_path): os.makedirs(save_path) frame_all = pd.DataFrame(frame_all) frame_all.to_csv(os.path.join(save_path, "gpt_evaluation_statistics.csv")) for category in tqdm.tqdm( frame_per_category.keys(), desc=f"category: ", total=len(frame_per_category.keys()), ): data = pd.DataFrame(frame_per_category[category]) sns.set() fig = plt.figure(figsize=(16, 10)) plt.ylim((0, 5)) fig = sns.barplot(x="metric", y="avg_score", hue="model", data=data, dodge=True) fig.set_title(f"Comparison between Different Models for Category {category.title()}") plt.xlabel("Evaluation Metric") plt.ylabel("Average Score") figure = fig.get_figure() figure.savefig(os.path.join(save_path, f"{category}.png"), dpi=400) plt.close()