# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict import transformers DEFAULT_PAD_TOKEN = "[PAD]" DEFAULT_EOS_TOKEN = "" DEFAULT_BOS_TOKEN = "" DEFAULT_UNK_TOKEN = "" def prepare_llama_tokenizer_and_embedding( tokenizer: transformers.PreTrainedTokenizer, model: transformers.PreTrainedModel, special_tokens_dict: Dict = dict(pad_token=DEFAULT_PAD_TOKEN), ): """prepare llama tokenizer and embedding. """ if tokenizer.pad_token is None: smart_tokenizer_and_embedding_resize( special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN), tokenizer=tokenizer, model=model, ) tokenizer.add_special_tokens({ "eos_token": DEFAULT_EOS_TOKEN, "bos_token": DEFAULT_BOS_TOKEN, "unk_token": DEFAULT_UNK_TOKEN, }) return tokenizer def smart_tokenizer_and_embedding_resize( tokenizer: transformers.PreTrainedTokenizer, model: transformers.PreTrainedModel, special_tokens_dict: Dict = dict(pad_token=DEFAULT_PAD_TOKEN), ): """Resize tokenizer and embedding. Note: This is the unoptimized version that may make your embedding size not be divisible by 64. """ if tokenizer.pad_token is None: num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) model.resize_token_embeddings(len(tokenizer)) if num_new_tokens > 0: input_embeddings = model.get_input_embeddings().weight.data output_embeddings = model.get_output_embeddings().weight.data input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True) output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True) input_embeddings[-num_new_tokens:] = input_embeddings_avg output_embeddings[-num_new_tokens:] = output_embeddings_avg