import pytest import torch import torch.distributed as dist from utils import shared_tempdir import colossalai from colossalai.booster import Booster from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin from colossalai.nn.optimizer import HybridAdam from colossalai.testing import ( check_state_dict_equal, clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn, ) from tests.kit.model_zoo import model_zoo @clear_cache_before_run() @parameterize("model_name", ["transformers_gpt"]) @parameterize("plugin_type", ["ddp", "zero", "gemini"]) def exam_from_pretrained(plugin_type: str, model_name: str, shard=True, size_per_shard=32): (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) = next( iter(model_zoo.get_sub_registry(model_name).values()) ) criterion = loss_fn if plugin_type == "ddp": plugin = TorchDDPPlugin() elif plugin_type == "zero": plugin = LowLevelZeroPlugin(stage=2, max_norm=1.0, initial_scale=32) elif plugin_type == "gemini": plugin = GeminiPlugin(precision="fp16", initial_scale=32) else: raise ValueError(f"Plugin with type {plugin_type} is invalid, please check your argument.") booster = Booster(plugin=plugin) model = model_fn().cuda() model_huggingface_cls = model.__class__ optimizer = HybridAdam(model.parameters(), lr=0.001) model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion) data = data_gen_fn() data = {k: v.to("cuda") if torch.is_tensor(v) or "Tensor" in v.__class__.__name__ else v for k, v in data.items()} output = model(**data) loss = criterion(output) booster.backward(loss, optimizer) optimizer.step() with shared_tempdir() as tempdir: model_ckpt_path = f"{tempdir}/model" booster.save_model(model, model_ckpt_path, shard=shard, size_per_shard=size_per_shard) dist.barrier() new_model = model_huggingface_cls.from_pretrained(model_ckpt_path) new_model = new_model.cuda() new_optimizer = HybridAdam(new_model.parameters(), lr=0.001) new_model, new_optimizer, criterion, _, _ = booster.boost(new_model, new_optimizer, criterion) if plugin_type == "gemini": check_state_dict_equal(model.state_dict(only_rank_0=False), new_model.state_dict(only_rank_0=False), False) else: check_state_dict_equal(model.unwrap().state_dict(), new_model.unwrap().state_dict(), False) dist.barrier() def run_dist(rank, world_size, port): config = {} colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") exam_from_pretrained() @pytest.mark.dist @pytest.mark.parametrize("world_size", [2]) @rerun_if_address_is_in_use() def test_huggingface_compatibility(world_size): spawn(run_dist, world_size)