from contextlib import contextmanager from enum import Enum from functools import partial from typing import List import torch from colossalai.gemini.memory_tracer import SyncCudaMemoryMonitor from colossalai.tensor.param_op_hook import ParamOpHook from colossalai.gemini.tensor_utils import free_storage, alloc_storage from colossalai.gemini.memory_tracer.model_data_memtracer import GLOBAL_CUDA_MEM_INFO class TrainingPhase(Enum): FORWARD = 0 BACKWARD = 1 class GradHook(): def __init__(self, module: torch.nn.Module): self.module = module self.grad_hook_list = [] def grad_handle(self, p, grad): assert GLOBAL_CUDA_MEM_INFO.unreleased_grad_flag[p] free_storage(grad) GLOBAL_CUDA_MEM_INFO.unreleased_grad_volume -= grad.numel() * grad.element_size() GLOBAL_CUDA_MEM_INFO.unreleased_grad_flag[p] = False def register_grad_hook(self): for p in self.module.parameters(): if p.requires_grad: self.grad_hook_list.append(p.register_hook(partial(self.grad_handle, p))) GLOBAL_CUDA_MEM_INFO.unreleased_grad_flag[p] = False def remove_grad_hook(self): for hook in self.grad_hook_list: hook.remove() class ParamTracerHook(ParamOpHook): def __init__(self) -> None: super().__init__() self._training_phase = TrainingPhase.FORWARD self.mem_monitor = SyncCudaMemoryMonitor() def _free_cuda_params(self, params): for p in params: if p.data.device.type == "cpu": raise NotImplementedError("Only free cuda memory") free_storage(p.data) def _allocate_params_on_cuda(self, params): for p in params: cur_dev = p.data.device.type if cur_dev == "cpu": if p.grad is not None and p.grad.device.type == "cpu": raise NotImplementedError("Only run in forward propagation") p.data = torch.empty(p.data.shape, device="cuda", dtype=p.data.dtype, requires_grad=p.data.requires_grad) elif cur_dev == "cuda": alloc_storage(p.data) def sample_model_data(self, params): data_volume = GLOBAL_CUDA_MEM_INFO.unreleased_grad_volume for p in params: cur_model_data_volume = p.data.numel() * p.data.element_size() data_volume += cur_model_data_volume if self._training_phase == TrainingPhase.BACKWARD and p.requires_grad: # add param.grad, actually param.grad is None in this time data_volume += cur_model_data_volume if not GLOBAL_CUDA_MEM_INFO.unreleased_grad_flag[p]: GLOBAL_CUDA_MEM_INFO.unreleased_grad_volume += cur_model_data_volume GLOBAL_CUDA_MEM_INFO.unreleased_grad_flag[p] = True GLOBAL_CUDA_MEM_INFO.model_data_list.append(data_volume) def pre_op(self, params): cuda_volume = self.mem_monitor.finish() if len(GLOBAL_CUDA_MEM_INFO.model_data_list): GLOBAL_CUDA_MEM_INFO.non_model_data_list.append(cuda_volume - GLOBAL_CUDA_MEM_INFO.model_data_list[-1]) self._allocate_params_on_cuda(params) self.sample_model_data(params) self.mem_monitor.start() def post_op(self, params): self._free_cuda_params(params) def pre_forward(self, params: List[torch.Tensor]) -> None: self.pre_op(params) def post_forward(self, params: List[torch.Tensor]) -> None: self.post_op(params) def pre_backward(self, params: List[torch.Tensor]) -> None: self.pre_op(params) def post_backward(self, params: List[torch.Tensor]) -> None: self.post_op(params) @contextmanager def switch_training_phase(self, training_phase: TrainingPhase = TrainingPhase.BACKWARD): old_training_phase = self._training_phase try: self._training_phase = training_phase yield finally: self._training_phase = old_training_phase switch_to_backward = switch_training_phase switch_to_forward = partial(switch_to_backward, training_phase=TrainingPhase.FORWARD)