# Benchmarks ## Benchmark OPT with LoRA on dummy prompt data We provide various OPT models (string in parentheses is the corresponding model name used in this script): - OPT-125M (125m) - OPT-350M (350m) - OPT-700M (700m) - OPT-1.3B (1.3b) - OPT-2.7B (2.7b) - OPT-3.5B (3.5b) - OPT-5.5B (5.5b) - OPT-6.7B (6.7b) - OPT-10B (10b) - OPT-13B (13b) We also provide various training strategies: - ddp: torch DDP - colossalai_gemini: ColossalAI GeminiDDP with `placement_policy="cuda"`, like zero3 - colossalai_gemini_cpu: ColossalAI GeminiDDP with `placement_policy="cpu"`, like zero3-offload - colossalai_zero2: ColossalAI zero2 - colossalai_zero2_cpu: ColossalAI zero2-offload - colossalai_zero1: ColossalAI zero1 - colossalai_zero1_cpu: ColossalAI zero1-offload We only support `torchrun` to launch now. E.g. ```bash # run OPT-125M with no lora (lora_rank=0) on single-node single-GPU with min batch size torchrun --standalone --nproc_per_node 1 benchmark_opt_lora_dummy.py \ --model 125m --critic_model 125m --strategy ddp \ --experience_batch_size 1 --train_batch_size 1 --lora_rank 0 # run Actor (OPT-1.3B) and Critic (OPT-350M) with lora_rank=4 on single-node 4-GPU torchrun --standalone --nproc_per_node 4 benchmark_opt_lora_dummy.py \ --model 1.3b --critic_model 350m --strategy colossalai_zero2 --lora_rank 4 ```