import torch import triton import triton.language as tl @triton.jit def rotary_embedding_kernel( q, k, cos, sin, q_token_stride, q_head_stride, k_token_stride, k_head_stride, head_dim_stride, cos_token_stride, cos_stride, q_total_tokens, Q_HEAD_NUM: tl.constexpr, K_HEAD_NUM: tl.constexpr, HEAD_DIM: tl.constexpr, BLOCK_HEAD: tl.constexpr, BLOCK_TOKENS: tl.constexpr, ): block_head_index = tl.program_id(0) block_token_index = tl.program_id(1) rotary_data = q HEAD_NUM = Q_HEAD_NUM head_stride = q_head_stride token_stride = q_token_stride if block_token_index * BLOCK_TOKENS >= q_total_tokens: block_token_index = block_token_index - tl.cdiv(q_total_tokens, BLOCK_TOKENS) rotary_data = k HEAD_NUM = K_HEAD_NUM head_stride = k_head_stride token_stride = k_token_stride tokens_range = block_token_index * BLOCK_TOKENS + tl.arange(0, BLOCK_TOKENS) head_range = block_head_index * BLOCK_HEAD + tl.arange(0, BLOCK_HEAD) dim_range0 = tl.arange(0, HEAD_DIM // 2) dim_range1 = tl.arange(HEAD_DIM // 2, HEAD_DIM) off_data0 = ( tokens_range[:, None, None] * token_stride + head_range[None, :, None] * head_stride + dim_range0[None, None, :] * head_dim_stride ) off_data1 = ( tokens_range[:, None, None] * token_stride + head_range[None, :, None] * head_stride + dim_range1[None, None, :] * head_dim_stride ) loaded_data0 = tl.load( rotary_data + off_data0, mask=((head_range[None, :, None] < HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)), other=0.0, ) loaded_data1 = tl.load( rotary_data + off_data1, mask=((head_range[None, :, None] < HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)), other=0.0, ) off_cos_sin = tokens_range[:, None] * cos_token_stride + dim_range0[None, :] * cos_stride loaded_cos = tl.load(cos + off_cos_sin, mask=(tokens_range[:, None] < q_total_tokens), other=0.0) loaded_sin = tl.load(sin + off_cos_sin, mask=(tokens_range[:, None] < q_total_tokens), other=0.0) out0 = loaded_data0 * loaded_cos[:, None, :] - loaded_data1 * loaded_sin[:, None, :] out1 = loaded_data0 * loaded_sin[:, None, :] + loaded_data1 * loaded_cos[:, None, :] # concat tl.store( rotary_data + off_data0, out0, mask=((head_range[None, :, None] < HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)), ) tl.store( rotary_data + off_data1, out1, mask=((head_range[None, :, None] < HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)), ) @torch.no_grad() def rotary_embedding( q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor, ): """ Args: q: query tensor, [total_tokens, head_num, head_dim] k: key tensor, [total_tokens, head_num, head_dim] cos: cosine for rotary embedding, [total_tokens, head_dim] sin: sine for rotary embedding, [total_tokens, head_dim] """ q_total_tokens, q_head_num, head_dim = q.shape assert q.shape[0] == cos.shape[0] and q.shape[0] == sin.shape[0], f"q shape {q.shape} cos shape {cos.shape}" BLOCK_HEAD = 4 BLOCK_TOKENS = 8 grid = (triton.cdiv(q_head_num, BLOCK_HEAD), 2 * triton.cdiv(q_total_tokens, BLOCK_TOKENS)) if head_dim >= 128: num_warps = 8 else: num_warps = 4 q_token_stride = q.stride(0) q_head_stride = q.stride(1) head_dim_stride = q.stride(2) k_token_stride = k.stride(0) k_head_stride = k.stride(1) k_head_num = q.shape[1] cos_token_stride = cos.stride(0) cos_stride = cos.stride(1) rotary_embedding_kernel[grid]( q, k, cos, sin, q_token_stride, q_head_stride, k_token_stride, k_head_stride, head_dim_stride, cos_token_stride, cos_stride, q_total_tokens, Q_HEAD_NUM=q_head_num, K_HEAD_NUM=k_head_num, HEAD_DIM=head_dim, BLOCK_HEAD=BLOCK_HEAD, BLOCK_TOKENS=BLOCK_TOKENS, num_warps=num_warps, num_stages=1, ) return