# Define your own parallel model ## Write a Simple 2D Parallel Model Let's say we have a huge MLP model and its very large hidden size makes it difficult to fit into a single GPU. We can then distribute the model weights across GPUs in a 2D mesh while you still write your model in a familiar way. ```python from colossalai.nn import Linear2D import torch.nn as nn class MLP_2D(nn.Module): def __init__(self): super().__init__() self.linear_1 = Linear2D(in_features=1024, out_features=16384) self.linear_2 = Linear2D(in_features=16384, out_features=1024) def forward(self, x): x = self.linear_1(x) x = self.linear_2(x) return x ``` ## Use pre-defined model Our Model Zoo supports *BERT*, *VIT*, *MLP-Mixer* of different sizes.