import math import pytest import torch from packaging import version try: import triton import triton.language as tl from colossalai.kernel.triton.token_attention_kernel import token_attn_fwd_1 HAS_TRITON = True except ImportError: HAS_TRITON = False print("please install triton from https://github.com/openai/triton") TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse('11.4') def torch_attn(xq, xk, bs, seqlen, num_head, head_dim): xq = xq.view(bs, 1, num_head, head_dim) xk = xk.view(bs, seqlen, num_head, head_dim) keys = xk xq = xq.transpose(1, 2) keys = keys.transpose(1, 2) scores = (torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(head_dim)).squeeze().transpose(0, 1).reshape( num_head, -1) return scores def torch_attn_1(xq, xk, seqlen, num_head, head_dim): xq = xq.view(1, num_head, head_dim) xk = xk.view(seqlen, num_head, head_dim) logics = torch.sum(xq * xk, dim=-1, keepdim=False) logics = logics.transpose(0, 1) / math.sqrt(head_dim) return logics @pytest.mark.skipif(not TRITON_CUDA_SUPPORT or not HAS_TRITON, reason="triton requires cuda version to be higher than 11.4") def test_attn_1(): import time batch_size, seq_len, head_num, head_dim = 17, 1025, 12, 128 dtype = torch.float16 q = torch.empty((batch_size, head_num, head_dim), dtype=dtype, device="cuda").normal_(mean=0.1, std=0.2) k = torch.empty((batch_size * seq_len, head_num, head_dim), dtype=dtype, device="cuda").normal_(mean=0.1, std=0.2) attn_out = torch.empty((head_num, batch_size * seq_len), dtype=dtype, device="cuda") b_loc = torch.zeros((batch_size, seq_len), dtype=torch.int32, device="cuda") kv_cache_start_loc = torch.zeros((batch_size,), dtype=torch.int32, device="cuda") kv_cache_seq_len = torch.zeros((batch_size,), dtype=torch.int32, device="cuda") for i in range(batch_size): kv_cache_start_loc[i] = i * seq_len kv_cache_seq_len[i] = seq_len b_loc[i] = i * seq_len + torch.arange(0, seq_len, dtype=torch.int32, device="cuda") token_attn_fwd_1(q, k, attn_out, b_loc, kv_cache_start_loc, kv_cache_seq_len, seq_len) torch_out = torch_attn(q, k, batch_size, seq_len, head_num, head_dim).squeeze() o = attn_out.squeeze() print("max ", torch.max(torch.abs(torch_out - o))) print("mean ", torch.mean(torch.abs(torch_out - o))) assert torch.allclose(torch_out, o, atol=1e-2, rtol=0) if __name__ == "__main__": test_attn_1()