import os import warnings import pytest import torch from packaging import version import colossalai from colossalai.inference.tensor_parallel.engine import TPInferEngine from colossalai.logging import disable_existing_loggers from colossalai.shardformer import ShardConfig from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn from tests.kit.model_zoo import model_zoo os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true' TPSIZE = 2 BATCH_SIZE = 8 MAX_INPUT_LEN = 12 MAX_OUTPUT_LEN = 100 CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse('11.5') def init_to_get_rotary(self, base=10000): self.config.head_dim_ = self.config.hidden_size // self.config.num_attention_heads if not hasattr(self.config, "rope_scaling"): rope_scaling_factor = 1.0 else: rope_scaling_factor = self.config.rope_scaling.factor if self.config.rope_scaling is not None else 1.0 if hasattr(self.config, "max_sequence_length"): max_seq_len = self.config.max_sequence_length elif hasattr(self.config, "max_position_embeddings"): max_seq_len = self.config.max_position_embeddings * rope_scaling_factor else: max_seq_len = 2048 * rope_scaling_factor base = float(base) inv_freq = 1.0 / (base**(torch.arange(0, self.config.head_dim_, 2, device="cpu", dtype=torch.float32) / self.config.head_dim_)) t = torch.arange(max_seq_len + 1024 * 64, device="cpu", dtype=torch.float32) / rope_scaling_factor freqs = torch.outer(t, inv_freq) self._cos_cached = torch.cos(freqs).to(torch.float16).cuda() self._sin_cached = torch.sin(freqs).to(torch.float16).cuda() return @parameterize('test_config', [{ 'tp_size': TPSIZE, }]) def run_llama_test(test_config): sub_model_zoo = model_zoo.get_sub_registry('transformers_llama_for_casual_lm') for name, (model_fn, data_gen_fn, _, _, _) in sub_model_zoo.items(): orig_model = model_fn() init_to_get_rotary(orig_model.model, base=10000) orig_model = orig_model.half() data = data_gen_fn() shard_config = ShardConfig(enable_tensor_parallelism=True if test_config['tp_size'] > 1 else False, inference_only=True) infer_engine = TPInferEngine(orig_model, shard_config, BATCH_SIZE, MAX_INPUT_LEN, MAX_OUTPUT_LEN) generate_kwargs = dict(do_sample=False) outputs = infer_engine.generate(data, **generate_kwargs) assert outputs is not None def check_llama(rank, world_size, port): disable_existing_loggers() colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_llama_test() @pytest.mark.skipif(not CUDA_SUPPORT, reason="kv-cache manager engine requires cuda version to be higher than 11.5") @pytest.mark.dist @rerun_if_address_is_in_use() @clear_cache_before_run() def test_llama(): spawn(check_llama, TPSIZE) if __name__ == "__main__": test_llama()