import math from typing import Dict, List, Optional, Set, Tuple, Union import torch from transformers.models.vit.modeling_vit import BaseModelOutput, ViTEncoder from transformers.utils import logging from colossalai.pipeline.stage_manager import PipelineStageManager def _encoder_forward( encoder: ViTEncoder, start_idx: int, end_idx: int, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, return_dict: bool = True, stage_manager: PipelineStageManager = None, ) -> Union[tuple, BaseModelOutput]: for i in range(start_idx, end_idx): layer_module = encoder.layer[i] layer_head_mask = head_mask[i] if head_mask is not None else None if encoder.gradient_checkpointing and encoder.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, False) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, layer_head_mask, ) else: layer_outputs = layer_module(hidden_states, layer_head_mask, False) hidden_states = layer_outputs[0] if not stage_manager.is_last_stage(): return hidden_states else: if not return_dict: return tuple(hidden_states) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=None, attentions=None, ) def ViTModel_pipeline_forward(stage_manager: PipelineStageManager, stage_index: List[int]): from transformers.models.vit.modeling_vit import BaseModelOutputWithPooling def pp_forward( self, pixel_values: Optional[torch.Tensor] = None, bool_masked_pos: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = None, return_dict: Optional[bool] = None, hidden_states: Optional[torch.FloatTensor] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict logger = logging.get_logger(__name__) # Preprocess passed in arguments if output_attentions: logger.warning_once('output_attentions=True is not supported for pipeline models at the moment.') output_attentions = False if output_hidden_states: logger.warning_once('output_hidden_states=True is not supported for pipeline models at the moment.') output_hidden_states = False # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) if stage_manager.is_first_stage(): if pixel_values is None: raise ValueError("You have to specify pixel_values") # TODO(FoolPlayer): maybe have a cleaner way to cast the input (from `ImageProcessor` side?) expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype if pixel_values.dtype != expected_dtype: pixel_values = pixel_values.to(expected_dtype) embedding_output = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding) else: assert hidden_states is not None, f"Current stage is {stage_manager.stage}, hidden_states should not be None" # Go through encoder if not stage_manager.is_last_stage(): hidden_states = _encoder_forward( encoder=self.encoder, start_idx=stage_index[0], end_idx=stage_index[1], hidden_states=embedding_output, head_mask=head_mask, return_dict=return_dict, stage_manager=stage_manager, ) return {'hidden_states': hidden_states} else: encoder_outputs = _encoder_forward( encoder=self.encoder, start_idx=stage_index[0], end_idx=stage_index[1], hidden_states=hidden_states, head_mask=head_mask, return_dict=return_dict, stage_manager=stage_manager, ) # Go through rest layers sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) return head_outputs + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) return pp_forward def ViTForImageClassification_pipeline_forward(stage_manager: PipelineStageManager, stage_index: List[int]): from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from transformers.models.vit.modeling_vit import ImageClassifierOutput def pp_forward( self, pixel_values: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = None, return_dict: Optional[bool] = None, hidden_states: Optional[torch.FloatTensor] = None, ) -> Union[tuple, ImageClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if not stage_manager.is_first_stage(): assert hidden_states is not None, f"Current stage is {stage_manager.stage}, hidden_states should not be None" outputs = self.vit( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, interpolate_pos_encoding=interpolate_pos_encoding, return_dict=return_dict, hidden_states=hidden_states, ) # not last stage, return hidden_states if not stage_manager.is_last_stage(): return outputs else: sequence_output = outputs[0] # last stage logits = self.classifier(sequence_output[:, 0, :]) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) return pp_forward def ViTForMaskedImageModeling_pipeline_forward(stage_manager: PipelineStageManager, stage_index: List[int]): import math import torch.nn as nn from transformers.models.vit.modeling_vit import ImageClassifierOutput, MaskedImageModelingOutput def pp_forward( self, pixel_values: Optional[torch.Tensor] = None, bool_masked_pos: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = None, return_dict: Optional[bool] = None, hidden_states: Optional[torch.FloatTensor] = None, ) -> Union[tuple, ImageClassifierOutput]: r""" bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, ViTForMaskedImageModeling >>> import torch >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k") >>> model = ViTForMaskedImageModeling.from_pretrained("google/vit-base-patch16-224-in21k") >>> num_patches = (model.config.image_size // model.config.patch_size) ** 2 >>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values >>> # create random boolean mask of shape (batch_size, num_patches) >>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool() >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) >>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction >>> list(reconstructed_pixel_values.shape) [1, 3, 224, 224] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if bool_masked_pos is not None and (self.config.patch_size != self.config.encoder_stride): raise ValueError( "When `bool_masked_pos` is provided, `patch_size` must be equal to `encoder_stride` to ensure that " "the reconstructed image has the same dimensions as the input." f"Got `patch_size` = {self.config.patch_size} and `encoder_stride` = {self.config.encoder_stride}.") if not stage_manager.is_first_stage(): assert hidden_states is not None, f"Current stage is {stage_manager.stage}, hidden_states should not be None" outputs = self.vit(pixel_values, bool_masked_pos=bool_masked_pos, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, interpolate_pos_encoding=interpolate_pos_encoding, return_dict=return_dict, hidden_states=hidden_states) if not stage_manager.is_last_stage(): return outputs else: sequence_output = outputs[0] # Reshape to (batch_size, num_channels, height, width) sequence_output = sequence_output[:, 1:] batch_size, sequence_length, num_channels = sequence_output.shape height = width = math.floor(sequence_length**0.5) sequence_output = sequence_output.permute(0, 2, 1).reshape(batch_size, num_channels, height, width) # Reconstruct pixel values reconstructed_pixel_values = self.decoder(sequence_output) masked_im_loss = None if bool_masked_pos is not None: size = self.config.image_size // self.config.patch_size bool_masked_pos = bool_masked_pos.reshape(-1, size, size) mask = (bool_masked_pos.repeat_interleave(self.config.patch_size, 1).repeat_interleave(self.config.patch_size, 2).unsqueeze(1).contiguous()) reconstruction_loss = nn.functional.l1_loss(pixel_values, reconstructed_pixel_values, reduction="none") masked_im_loss = (reconstruction_loss * mask).sum() / (mask.sum() + 1e-5) / self.config.num_channels if not return_dict: output = (reconstructed_pixel_values,) + outputs[1:] return ((masked_im_loss,) + output) if masked_im_loss is not None else output return MaskedImageModelingOutput( loss=masked_im_loss, reconstruction=reconstructed_pixel_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) return pp_forward def get_vit_flash_self_attention_forward(): from transformers.models.vit.modeling_vit import ViTSelfAttention from colossalai.kernel.cuda_native import ColoAttention def transpose_for_scores(x: torch.Tensor, num_attention_heads, attention_head_size) -> torch.Tensor: new_x_shape = x.size()[:-1] + (num_attention_heads, attention_head_size) x = x.view(new_x_shape) return x def forward(self: ViTSelfAttention, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: mixed_query_layer = self.query(hidden_states) key_layer = transpose_for_scores(self.key(hidden_states), self.num_attention_heads, self.attention_head_size) value_layer = transpose_for_scores(self.value(hidden_states), self.num_attention_heads, self.attention_head_size) query_layer = transpose_for_scores(mixed_query_layer, self.num_attention_heads, self.attention_head_size) scale = 1.0 / math.sqrt(self.attention_head_size) attention = ColoAttention(embed_dim=self.all_head_size, num_heads=self.num_attention_heads, dropout=self.dropout.p, scale=scale) context_layer = attention(query_layer, key_layer, value_layer) outputs = (context_layer,) return outputs return forward def get_jit_fused_vit_output_forward(): from transformers.models.vit.modeling_vit import ViTOutput def forward(self: ViTOutput, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout_add(hidden_states, input_tensor, self.dropout.p, self.dropout.training) return hidden_states return forward