from typing import List, Optional import torch import torch.distributed as dist from colossalai.legacy.zero.gemini.tensor_utils import colo_model_data_tensor_move_inline from colossalai.legacy.zero.shard_utils import BaseShardStrategy from colossalai.legacy.zero.shard_utils.commons import get_shard from colossalai.legacy.zero.sharded_param.sharded_tensor import ShardedTensor from colossalai.utils import get_current_device class TensorShardStrategy(BaseShardStrategy): """ A naive implementation which shard each tensor evenly over all ranks """ def shard(self, tensor_list: List[ShardedTensor], process_group: Optional[dist.ProcessGroup] = None): for t in tensor_list: self._shard_tensor(t, process_group) def gather(self, tensor_list: List[ShardedTensor], process_group: Optional[dist.ProcessGroup] = None): for t in tensor_list: self._gather_tensor(t, process_group) def _shard_tensor(self, t: ShardedTensor, process_group: Optional[dist.ProcessGroup] = None): """ Shard tensor among processes. Args: t (ShardedTensor): a tensor to be sharded. process_group (Optional[dist.ProcessGroup], optional): the process group among which tensor shards. Defaults to None. """ if t.is_sharded: return if t.payload.device.type == 'cuda': assert t.payload.device == get_current_device(), f"shard tensor on cuda device index {t.payload.device.index},"\ f" but current cuda device is {get_current_device()}" sharded_payload, _ = get_shard(t.payload, dist.get_rank(process_group), dist.get_world_size(process_group)) t.payload_reset(sharded_payload) t.is_sharded = True def _gather_tensor(self, t: ShardedTensor, process_group: Optional[dist.ProcessGroup] = None): if not t.is_sharded: return target_device = t.device payload_numel = t.payload.numel() world_size = dist.get_world_size(process_group) rank = dist.get_rank(process_group) buffer = torch.empty(payload_numel * world_size, dtype=t.payload.dtype, device=get_current_device()) buffer_list = list(torch.chunk(buffer, chunks=world_size, dim=0)) buffer_list[rank].copy_(t.payload) dist.all_gather(buffer_list, buffer_list[rank], group=process_group, async_op=False) gathered_payload = torch.narrow(buffer, 0, 0, t.origin_numel).reshape(t.origin_shape) t.payload_reset(gathered_payload) colo_model_data_tensor_move_inline(t, target_device) t.is_sharded = False