from typing import Optional import torch.nn as nn from transformers import LlamaConfig, LlamaForCausalLM, LlamaModel from ..base import RewardModel class LlamaRM(RewardModel): """ Llama Reward model. Args: pretrained (str): Pretrained model name or path. config (LlamaConfig): Model config. lora_rank (int): LoRA rank. lora_train_bias (str): LoRA bias training mode. """ def __init__(self, pretrained: Optional[str] = None, config: Optional[LlamaConfig] = None, lora_rank: int = 0, lora_train_bias: str = 'none') -> None: if pretrained is not None: model = LlamaModel.from_pretrained(pretrained) elif config is not None: model = LlamaModel(config) else: model = LlamaModel(LlamaConfig()) value_head = nn.Linear(model.config.hidden_size, 1) value_head.weight.data.normal_(mean=0.0, std=1 / (model.config.hidden_size + 1)) super().__init__(model, value_head, lora_rank, lora_train_bias)