from colossalai.amp import AMP_TYPE # hyperparameters # BATCH_SIZE is as per GPU # global batch size = BATCH_SIZE x data parallel size BATCH_SIZE = 256 LEARNING_RATE = 3e-3 WEIGHT_DECAY = 0.3 NUM_EPOCHS = 10 WARMUP_EPOCHS = 3 # model config IMG_SIZE = 224 PATCH_SIZE = 16 HIDDEN_SIZE = 512 DEPTH = 4 NUM_HEADS = 4 MLP_RATIO = 2 NUM_CLASSES = 1000 CHECKPOINT = False SEQ_LENGTH = (IMG_SIZE // PATCH_SIZE)**2 + 1 # add 1 for cls token # parallel setting TENSOR_PARALLEL_SIZE = 2 TENSOR_PARALLEL_MODE = '1d' parallel = dict( pipeline=2, tensor=dict(mode=TENSOR_PARALLEL_MODE, size=TENSOR_PARALLEL_SIZE), ) fp16 = dict(mode=AMP_TYPE.NAIVE) clip_grad_norm = 1.0 # pipeline config NUM_MICRO_BATCHES = parallel['pipeline']