import torch.nn as nn from torch.optim import Optimizer from torch.nn.modules.loss import _Loss from colossalai.context import Config from .torch_amp import TorchAMPOptimizer, TorchAMPModel, TorchAMPLoss from typing import Optional def convert_to_torch_amp(model: nn.Module, optimizer: Optimizer, criterion: Optional[_Loss] = None, amp_config: Optional[Config] = None): """A helper function to wrap training components with Pytorch AMP modules Args: model (:class:`torch.nn.Module`): your model object. optimizer (:class:`torch.optim.Optimizer`): your optimizer object criterion (:class:`torch.nn.modules.loss._Loss`, optional): your loss function object amp_config (:class:`colossalai.context.Config` or dict, optional): configuration for Pytorch AMP. The ``amp_config`` should include parameters below: :: init_scale (float, optional, default=2.**16) growth_factor (float, optional, default=2.0) backoff_factor (float, optional, default=0.5) growth_interval (int, optional, default=2000) enabled (bool, optional, default=True) Returns: A tuple (model, optimizer, criterion) """ model = TorchAMPModel(model) if amp_config is None: amp_config = dict() optimizer = TorchAMPOptimizer(optimizer, **amp_config) if criterion: criterion = TorchAMPLoss(criterion) return model, optimizer, criterion __all__ = ['convert_to_torch_amp', 'TorchAMPModel', 'TorchAMPLoss', 'TorchAMPOptimizer']