from typing import List, Set, Tuple, Dict import torch from torch.fx import GraphModule, Node import math from .linearize import linearize from .utils import * from colossalai.fx.profiler import profile_function, profile_module from colossalai.fx.passes.meta_info_prop import MetaInfoProp # this is the python compute table code from rotor # https://gitlab.inria.fr/hiepacs/rotor # paper link: https://hal.inria.fr/hal-02352969 def _compute_table(chain: Chain, mmax) -> Tuple: """Returns the optimal table: a tuple containing: Opt[m][lmin][lmax] with lmin = 0...chain.length and lmax = lmin...chain.length (lmax is not included) and m = 0...mmax what[m][lmin][lmax] is (True,) if the optimal choice is a chain checkpoint (False, j) if the optimal choice is a leaf checkpoint of length j The computation uses dynamic programming""" fw = chain.fweight + [0] ## forward time bw = chain.bweight ## backward time, not used cw = chain.cweight + [0] ## size of x (and of y) cbw = chain.cbweight + [0] ## size of xbar fwd_tmp = chain.fwd_tmp + [0] bwd_tmp = chain.bwd_tmp + [0] # Build table opt = [[{} for _ in range(chain.length + 1)] for _ in range(mmax + 1)] what = [[{} for _ in range(chain.length + 1)] for _ in range(mmax + 1)] ## Last one is a dict because its indices go from i to l. Renumbering will wait for C implementation # Initialize borders of the tables for lmax-lmin = 0 for m in range(mmax + 1): for i in range(chain.length + 1): #lmax-lmin = 0 limit = max(cw[i + 1] + cbw[i + 1] + fwd_tmp[i], cw[i] + cw[i + 1] + cbw[i + 1] + bwd_tmp[i]) if m >= limit: ## Equation (1) opt[m][i][i] = fw[i] + bw[i] else: opt[m][i][i] = float("inf") # Compute everything for m in range(mmax + 1): for d in range(1, chain.length + 1): for i in range(chain.length + 1 - d): # for idx in range(i+1, chain.length + 1): idx = i + d mmin = cw[idx + 1] + cw[i + 1] + fwd_tmp[i] if idx > i + 1: mmin = max(mmin, cw[idx + 1] + max(cw[j] + cw[j + 1] + fwd_tmp[j] for j in range(i + 1, idx))) if m < mmin: opt[m][i][idx] = float("inf") else: leaf_checkpoints = [(j, sum(fw[i:j]) + opt[m - cw[j]][j][idx] + opt[m][i][j - 1]) for j in range(i + 1, idx + 1) if m >= cw[j]] if leaf_checkpoints: best_leaf = min(leaf_checkpoints, key=lambda t: t[1]) else: best_leaf = None if m >= cbw[i + 1]: chain_checkpoint = opt[m][i][i] + opt[m - cbw[i + 1]][i + 1][idx] else: chain_checkpoint = float("inf") if best_leaf and best_leaf[1] <= chain_checkpoint: opt[m][i][idx] = best_leaf[1] what[m][i][idx] = (False, best_leaf[0]) else: opt[m][i][idx] = chain_checkpoint what[m][i][idx] = (True,) return (opt, what) def _rec(chain, lmin, lmax, cmem, opt_table): """ chain : the class describing the AC graph lmin : index of the first forward to execute lmax : upper bound index of the last forward to execute (not included) cmem : number of available memory slots Return the optimal sequence of makespan Opt_hete[cmem][lmin][lmax-lmin]""" if cmem <= 0: raise ValueError("Can not process a chain with negative memory {cmem}".format(cmem=cmem)) opt, what = opt_table sequence = Sequence(Function("Persistent", lmax - lmin, cmem)) if opt[cmem][lmin][lmax] == float("inf"): raise ValueError("Can not process this chain from index {lmin} to {lmax} with memory {cmem}".format(lmin=lmin, lmax=lmax, cmem=cmem)) if lmin == lmax: if lmin == chain.length: sequence.insert(Loss()) else: sequence.insert(ForwardEnable(lmin)) sequence.insert(Backward(lmin)) return sequence if what[cmem][lmin][lmax][0]: sequence.insert(ForwardEnable(lmin)) sequence.insert_sequence(_rec(chain, lmin + 1, lmax, cmem - chain.cbweigth[lmin + 1], opt_table)) sequence.insert(Backward(lmin)) else: j = what[cmem][lmin][lmax][1] sequence.insert(ForwardCheck(lmin)) for k in range(lmin + 1, j): sequence.insert(ForwardNograd(k)) sequence.insert_sequence(_rec(chain, j, lmax, cmem - chain.cweigth[j], opt_table)) sequence.insert_sequence(_rec(chain, lmin, j - 1, cmem, opt_table)) return sequence def _discretize(mem_unit, values): return [math.ceil(value / mem_unit) for value in values] def _construct_chain(node_dict: Dict[int, Node], data: torch.Tensor, mem_unit: int) -> Chain: fwd_time = [] bwd_time = [] xbar_sizes = [data.numel() * data.element_size()] x_sizes = [data.numel() * data.element_size()] # currently we can't get the temp memory needed in fwd and bwd tmp_fwd = [0] * len(node_dict) tmp_bwd = [0] * (len(node_dict) + 1) for key in node_dict.keys(): fwd_time.append(0) bwd_time.append(0) xbar_sizes.append(0) x_sizes.append(node_dict[key][-1].meta['tensor_meta'].numel * torch.tensor([], dtype=node_dict[key][-1].meta['tensor_meta'].dtype).element_size()) for node in node_dict[key]: fwd_time[-1] += node.__flops__ # currently we haven't patched the backward flops count bwd_time[-1] += node.__flops__ * 2 xbar_sizes[-1] += node.__activation__ xbar_sizes[-1] = max(xbar_sizes[-1], x_sizes[-1]) bwd_time.append(0) fwd_time = _discretize(mem_unit, fwd_time) bwd_time = _discretize(mem_unit, bwd_time) xbar_sizes = _discretize(mem_unit, xbar_sizes) x_sizes = _discretize(mem_unit, x_sizes) tmp_fwd = _discretize(mem_unit, tmp_fwd) tmp_bwd = _discretize(mem_unit, tmp_bwd) return Chain(fwd_time, bwd_time, x_sizes, xbar_sizes, tmp_fwd, tmp_bwd) def _annotate_from_sequence(sequence: Sequence, node_dict: Dict[int, Node]) -> GraphModule: op_list = sequence.list_operations() loss_op = [op for op in op_list if isinstance(op, Loss)][0] op_list = op_list[:op_list.index(loss_op)] ckpt_idx = 0 in_ckpt = False ckpt_region = [] for idx, op in enumerate(op_list, 1): if in_ckpt: if isinstance(op, ForwardNograd): ckpt_region.append(idx) elif isinstance(op, ForwardEnable): in_ckpt = False for idx in ckpt_region: for node in node_dict[idx]: setattr(node, "activation_checkpoint", ckpt_idx) ckpt_idx += 1 ckpt_region = [] elif isinstance(op, ForwardCheck): for idx in ckpt_region: for node in node_dict[idx]: setattr(node, "activation_checkpoint", ckpt_idx) ckpt_idx += 1 ckpt_region = [idx] else: if isinstance(op, ForwardCheck): in_ckpt = True ckpt_region.append(idx) def solver_rotor(gm: GraphModule, data: torch.Tensor, mem_limit: int, mem_slots: int = 500) -> GraphModule: node_dict = linearize(gm) mem_unit = mem_limit // mem_slots MetaInfoProp(gm).run(data) chain: Chain = _construct_chain(node_dict, data, mem_unit) opt_table = _compute_table(chain, mem_slots) sequence = _rec(chain, 0, chain.length, mem_slots - chain.cweight[0], opt_table) _annotate_from_sequence(sequence, node_dict) return gm