import torch from torch.fx import GraphModule import torch.nn as nn import pytest from colossalai.fx.tracer.tracer import ColoTracer from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector from colossalai.tensor.shape_consistency import ShapeConsistencyManager from colossalai.device.device_mesh import DeviceMesh from colossalai.auto_parallel.solver.strategies_constructor import StrategiesConstructor from colossalai.auto_parallel.solver.cost_graph import CostGraph from copy import deepcopy from colossalai.auto_parallel.solver import Solver import transformers from colossalai.auto_parallel.solver.constants import * from colossalai.auto_parallel.solver.graph_analysis import GraphAnalyser from colossalai.auto_parallel.solver.options import SolverOptions BATCH_SIZE = 8 SEQ_LENGHT = 8 @pytest.mark.skip("for higher testing speed") def test_cost_graph(): physical_mesh_id = torch.arange(0, 8) mesh_shape = (2, 4) # [[0, 1] # [2, 3]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape) shape_consistency_manager = ShapeConsistencyManager() tracer = ColoTracer() config = transformers.GPT2Config(n_position=1024, n_layer=1, n_head=12) model = transformers.GPT2LMHeadModel(config=config) input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64) token_type_ids = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64) attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64) kwargs = dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask) meta_args = {k: v.to('meta') for k, v in kwargs.items()} graph = tracer.trace(root=model, meta_args=meta_args) gm = GraphModule(model, graph, model.__class__.__name__) gm.recompile() graph_analyser = GraphAnalyser(gm) liveness_list = graph_analyser.liveness_analysis() solver_options = SolverOptions(fast=True) strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options) print(graph) strategies_constructor.build_strategies_and_cost() for check_node, strategies_vector in strategies_constructor.strategy_map.items(): print(check_node, len(strategies_vector)) cost_graph = CostGraph(strategies_constructor.leaf_strategies) cost_graph.simplify_graph() # solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser, memory_budget=1620017824.0) solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser) ret = solver.call_solver_serialized_args() print(ret) strategies_list = list(ret[0]) print(strategies_list) computation_cost = 0 communication_cost = 0 memory_cost = 0 nodes = [strategies_vector.node for strategies_vector in strategies_constructor.leaf_strategies] for index, node in enumerate(nodes): print(node.name, node.strategies_vector[strategies_list[index]].name) computation_cost += node.strategies_vector[strategies_list[index]].compute_cost communication_cost += node.strategies_vector[strategies_list[index]].communication_cost node_memory_cost = node.strategies_vector[strategies_list[index]].memory_cost if isinstance(node_memory_cost, tuple): node_memory_cost = node_memory_cost[0] memory_cost += node_memory_cost print(f'computation cost is {computation_cost}') print(f'communication cost is {communication_cost}') print(f'memory cost is {memory_cost}') if __name__ == '__main__': test_cost_graph()