from typing import List, Dict, Tuple import os from torch.distributed import rpc import torch.distributed as dist from colossalai.tensor import ProcessGroup class PipelineProcessGroup: # TODO : flexible API for DP size and TP size # In the future design mode, dp_degree and tp_degree should be removed def __init__(self, rank: int, world_size: int, dp_degree: int = 1, tp_degree: int = 1, num_worker_threads: int = 1, device: str = "cuda") -> None: device_mesh_size = dp_degree * tp_degree assert world_size % device_mesh_size == 0, "world_size must be the multiple of dp_degree * tp_degree !!!" self._num_worker_threads = num_worker_threads self._device_mesh_size = device_mesh_size self._rank = rank self._world_size = world_size self._dp_degree = dp_degree self._tp_degree = tp_degree self.device = device self._stage_num = world_size // device_mesh_size self._pp_rank = rank // device_mesh_size self._pp_ranks = [(rank % device_mesh_size) + i * device_mesh_size for i in range(self._stage_num)] self._local_stage_ranks = [(rank // device_mesh_size * device_mesh_size) + i for i in range(device_mesh_size)] # pp_ranks self._initialize_pp_process_group() # initialise tp dp process groups self._initialize_tp_dp_process_group() # status self._is_first_pp_rank = self._pp_rank == 0 self._is_last_pp_rank = self._pp_rank == self._stage_num - 1 def _initialize_process_group(self): stage_num = self.get_stage_num() if stage_num == 1: return device = self.device world_size = self.get_world_size() rank = self.get_global_rank() backend = 'nccl' if device == 'cuda' else 'gloo' dist.init_process_group(backend, world_size=world_size, rank=rank, group_name='main_group') def _initialize_pp_process_group(self) -> None: rank = self.get_global_rank() world_size = self.get_world_size() # build rpc connection options = rpc.TensorPipeRpcBackendOptions(num_worker_threads=self._num_worker_threads) for pp_rank in self._pp_ranks: options.set_device_map(f'work{pp_rank}', {rank: pp_rank}) rpc.init_rpc(name=f'work{rank}', rank=rank, world_size=world_size, rpc_backend_options=options) def _initialize_tp_dp_process_group(self) -> None: rank = self.get_global_rank() local_stage_ranks = self.get_local_stage_global_ranks() dp_degree = self.get_dp_degree() tp_degree = self.get_tp_degree() self._tp_dp_process_group = ProcessGroup(rank, local_stage_ranks, tp_degree, dp_degree) def get_global_rank(self): return self._rank def get_world_size(self): return self._world_size def get_dp_degree(self) -> int: return self._dp_degree def get_tp_degree(self) -> int: return self._tp_degree def get_local_device_mesh_size(self) -> int: return self._device_mesh_size def get_device_mesh_num(self) -> int: pass def get_stage_num(self) -> int: return self._stage_num def is_first_stage(self) -> bool: return self._is_first_pp_rank def is_last_stage(self) -> bool: return self._is_last_pp_rank def check_pp_rank_valid(self, pp_rank: int) -> bool: return -1 < pp_rank < self._stage_num def get_local_pp_rank(self) -> int: return self._pp_rank def get_prev_pp_rank(self) -> int: prev_pp_rank = self._pp_rank - 1 if not self.check_pp_rank_valid(prev_pp_rank): assert ValueError(f"current rank's pp_rank: {self._pp_rank} doesn't have a previous stage!") return prev_pp_rank def get_next_pp_rank(self) -> int: next_pp_rank = self._pp_rank + 1 if not self.check_pp_rank_valid(next_pp_rank): assert ValueError(f"current rank's pp_rank: {self._pp_rank} doesn't have a next stage!") return next_pp_rank def get_local_stage_global_ranks(self) -> List[int]: return self._local_stage_ranks def local_dp_rank(self) -> int: return self._tp_dp_process_group.dp_local_rank() def local_tp_rank(self) -> int: return self._tp_dp_process_group.tp_local_rank() def get_pp_global_ranks(self) -> int: return self._pp_ranks def get_dp_global_ranks(self): pass def get_tp_global_ranks(self): pass