# Config file Here is a config file example showing how to train a ViT model on the CIFAR10 dataset using Colossal-AI: ```python # optional # three keys: pipeline, tensor # data parallel size is inferred parallel = dict( pipeline=dict(size=1), tensor=dict(size=4, mode='2d'), ) # optional # pipeline or no pipeline schedule fp16 = dict( mode=AMP_TYPE.NAIVE, initial_scale=2 ** 8 ) # optional # configuration for zero # you can refer to the Zero Redundancy optimizer and zero offload section for details # https://www.colossalai.org/zero.html zero = dict( level=, ... ) # optional # if you are using complex gradient handling # otherwise, you do not need this in your config file # default gradient_handlers = None gradient_handlers = [dict(type='MyHandler', arg1=1, arg=2), ...] # optional # specific gradient accumulation size # if your batch size is not large enough gradient_accumulation = # optional # add gradient clipping to your engine # this config is not compatible with zero and AMP_TYPE.NAIVE # but works with AMP_TYPE.TORCH and AMP_TYPE.APEX # defautl clip_grad_norm = 0.0 clip_grad_norm = # optional # cudnn setting # default is like below cudnn_benchmark = False, cudnn_deterministic=True, ```