from typing import Any, Optional, Tuple import torch import torch.distributed as dist from colossalai.communication.collective import (all_gather, all_reduce, reduce, reduce_scatter) from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.utils import get_current_device from torch import Tensor from torch.cuda.amp import custom_bwd, custom_fwd def matmul_2d( a, b, summa_dim, out_shape, row_rank=None, col_rank=None, row_parallel_mode=ParallelMode.PARALLEL_2D_ROW, col_parallel_mode=ParallelMode.PARALLEL_2D_COL, ): """Matrix multiplication for 2D parallelism :param a: matrix :math:`A` :type a: torch.tensor :param b: matrix :math:`B` :type b: torch.tensor :param summa_dim: dimension of SUMMA fo 2D parallelism :type summa_dim: int :param out_shape: shape of output tensor :type out_shape: tuple :param row_rank: the rank of row, defaults to None :type row_rank: int, optional :param col_rank: the rank of column, defaults to None :type col_rank: int, optional :param row_parallel_mode: row parallel mode, defaults to ParallelMode.PARALLEL_2D_ROW :type row_parallel_mode: str, optional :param col_parallel_mode: column parallel mode, defaults to ParallelMode.PARALLEL_2D_COL :type col_parallel_mode: str, optional :return: :math:`C = AB` :rtype: torch.tensor """ if row_rank is None: row_rank = gpc.get_local_rank(col_parallel_mode) if col_rank is None: col_rank = gpc.get_local_rank(row_parallel_mode) data_parallel_rank = 0 if not gpc.is_initialized(ParallelMode.DATA) else gpc.get_local_rank(ParallelMode.DATA) pipeline_parallel_rank = 0 if not gpc.is_initialized(ParallelMode.PIPELINE) else gpc.get_local_rank( ParallelMode.PIPELINE) pipeline_parallel_size = 1 if not gpc.is_initialized(ParallelMode.PIPELINE) else gpc.get_world_size( ParallelMode.PIPELINE) tensor_parallel_size = summa_dim**2 return Matmul_AB_2D(a, b, summa_dim, out_shape, row_rank, col_rank, row_parallel_mode, col_parallel_mode, data_parallel_rank, pipeline_parallel_rank, pipeline_parallel_size, tensor_parallel_size) class classifier_2d(torch.autograd.Function): """Matrix multiplication for :math:`C = AB` """ @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward( ctx: Any, A: Tensor, B: Tensor, bias: Optional[Tensor], summa_dim: int, out_shape: Tuple[int, ...], row_rank: int, col_rank: int, row_parallel_mode: ParallelMode, col_parallel_mode: ParallelMode, data_parallel_rank: int, pipeline_parallel_rank: int, pipeline_parallel_size: int, tensor_parallel_size: int, ) -> Tensor: A_shape = A.shape A = A.reshape((-1, A_shape[-1])) B_shape = B.shape B = B.reshape((-1, B_shape[-1])) B_temp = all_gather(B, -1, col_parallel_mode) if ctx: ctx.save_for_backward(A, B_temp) C = torch.matmul(A, B_temp.transpose(0, 1)) C = all_reduce(C, row_parallel_mode) ctx.use_bias = bias is not None if bias is not None: C = C + bias out = C.reshape(out_shape) if ctx: ctx.summa_dim = summa_dim ctx.row_rank = row_rank ctx.col_rank = col_rank ctx.row_parallel_mode = row_parallel_mode ctx.col_parallel_mode = col_parallel_mode ctx.A_shape = A_shape ctx.B_shape = B_shape ctx.data_parallel_rank = data_parallel_rank ctx.pipeline_parallel_rank = pipeline_parallel_rank ctx.pipeline_parallel_size = pipeline_parallel_size ctx.tensor_parallel_size = tensor_parallel_size return out @staticmethod @custom_bwd def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]: A, B = ctx.saved_tensors with torch.no_grad(): A_grad = torch.matmul(output_grad, B) A_grad = A_grad.reshape(ctx.A_shape) B_grad = torch.matmul(output_grad.reshape(-1, output_grad.shape[-1]).transpose(0, 1), A) B_grad = reduce_scatter(B_grad, -1, ctx.col_parallel_mode) B_grad = B_grad.reshape(ctx.B_shape) bias_grad = None if ctx.use_bias: bias_grad = torch.sum(output_grad, dim=tuple(range(output_grad.ndim - 1))) bias_grad = all_reduce(bias_grad, ctx.col_parallel_mode) return A_grad, B_grad, bias_grad, None, None, None, None, None, None, None, None, None, None class Matmul_AB_2D(torch.autograd.Function): """Matrix multiplication for :math:`C = AB` """ @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward( ctx: Any, A: Tensor, B: Tensor, summa_dim: int, out_shape: Tuple[int, ...], row_rank: int, col_rank: int, row_parallel_mode: ParallelMode, col_parallel_mode: ParallelMode, data_parallel_rank: int, pipeline_parallel_rank: int, pipeline_parallel_size: int, tensor_parallel_size: int, ) -> Tensor: # A: [b / q, s, h / q] -> [(b * s) / q, h / q] # B: [h / q, s / q] # C: [b / q, s, s / q] -> [(b * s) / q, s / q] assert A.shape[-1] == B.shape[-2], \ 'Invalid shapes: A={}, B={} for AB.'.format(A.shape, B.shape) if ctx: ctx.save_for_backward(A, B) A_shape = A.shape A = A.reshape((-1, A_shape[-1])) B_shape = B.shape B = B.reshape((-1, B_shape[-1])) C_shape = (A.shape[0], B.shape[-1]) C = torch.zeros(C_shape, dtype=A.dtype, device=get_current_device()) # use circular buffer to store the communication tensor # 2 is enough for all cases A_list = [torch.empty_like(A) for _ in range(2)] B_list = [torch.empty_like(B) for _ in range(2)] row_group = gpc.get_group(row_parallel_mode) col_group = gpc.get_group(col_parallel_mode) src_a = summa_dim * row_rank + data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \ pipeline_parallel_rank * tensor_parallel_size src_b = col_rank + data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \ pipeline_parallel_rank * tensor_parallel_size opa = [None] * 2 opb = [None] * 2 A_list[0].copy_(A) B_list[0].copy_(B) opa[0] = dist.broadcast(A_list[0], src=src_a, group=row_group, async_op=True) opb[0] = dist.broadcast(B_list[0], src=src_b, group=col_group, async_op=True) cur = 0 for i in range(summa_dim): if i != summa_dim - 1: A_list[1 - cur].copy_(A) opa[1 - cur] = dist.broadcast(A_list[1 - cur], src=src_a + 1, group=row_group, async_op=True) B_list[1 - cur].copy_(B) opb[1 - cur] = dist.broadcast(B_list[1 - cur], src=src_b + summa_dim, group=col_group, async_op=True) if opa[cur] is not None: opa[cur].wait() if opb[cur] is not None: opb[cur].wait() torch.addmm(C, A_list[cur], B_list[cur], out=C) cur = 1 - cur src_a += 1 src_b += summa_dim out = C.reshape(out_shape) if ctx: ctx.summa_dim = summa_dim ctx.row_rank = row_rank ctx.col_rank = col_rank ctx.row_parallel_mode = row_parallel_mode ctx.col_parallel_mode = col_parallel_mode ctx.A_shape = A_shape ctx.B_shape = B_shape ctx.data_parallel_rank = data_parallel_rank ctx.pipeline_parallel_rank = pipeline_parallel_rank ctx.pipeline_parallel_size = pipeline_parallel_size ctx.tensor_parallel_size = tensor_parallel_size return out @staticmethod @custom_bwd def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]: A, B = ctx.saved_tensors with torch.no_grad(): A_grad = Matmul_ABT_2D.apply(output_grad, B, ctx.summa_dim, ctx.A_shape, ctx.row_rank, ctx.col_rank, ctx.row_parallel_mode, ctx.col_parallel_mode, ctx.data_parallel_rank, ctx.pipeline_parallel_rank, ctx.pipeline_parallel_size, ctx.tensor_parallel_size) B_grad = Matmul_ATB_2D.apply(A, output_grad, ctx.summa_dim, ctx.B_shape, ctx.row_rank, ctx.col_rank, ctx.row_parallel_mode, ctx.col_parallel_mode, ctx.data_parallel_rank, ctx.pipeline_parallel_rank, ctx.pipeline_parallel_size, ctx.tensor_parallel_size) return A_grad, B_grad, None, None, None, None, None, None, None, None, None, None class Matmul_ABT_2D(torch.autograd.Function): """Matrix multiplication for :math:`C = AB^T` """ @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward( ctx: Any, A: Tensor, B: Tensor, summa_dim: int, out_shape: Tuple[int, ...], row_rank: int, col_rank: int, row_parallel_mode: ParallelMode, col_parallel_mode: ParallelMode, data_parallel_rank: int, pipeline_parallel_rank: int, pipeline_parallel_size: int, tensor_parallel_size: int, ) -> Tensor: assert A.shape[-1] == B.shape[-1], \ 'Invalid shapes: A={}, B={} for ABT.'.format(A.shape, B.shape) if ctx: ctx.save_for_backward(A, B) A_shape = A.shape A = A.reshape((-1, A_shape[-1])) B_shape = B.shape B = B.reshape((-1, B_shape[-1])) C_shape = (A.shape[0], B.shape[0]) C = torch.empty(C_shape, dtype=A.dtype, device=get_current_device()) # use circular buffer to store the communication tensor # 2 is enough for all cases B_list = [torch.empty_like(B) for _ in range(2)] C_list = [torch.empty_like(C) for _ in range(2)] row_group = gpc.get_group(row_parallel_mode) col_group = gpc.get_group(col_parallel_mode) src_b = col_rank + data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \ pipeline_parallel_rank * tensor_parallel_size src_c = summa_dim * row_rank + data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \ pipeline_parallel_rank * tensor_parallel_size opb = [None] * 2 opr = [None] * 2 B_list[0].copy_(B) opb[0] = dist.broadcast(B_list[0], src=src_b, group=col_group, async_op=True) cur = 0 for i in range(summa_dim): if i != summa_dim - 1: B_list[1 - cur].copy_(B) opb[1 - cur] = dist.broadcast(B_list[1 - cur], src=src_b + summa_dim, group=col_group, async_op=True) if opr[cur] is not None: opr[cur].wait() if i - 2 == col_rank: C.copy_(C_list[cur]) if opb[cur] is not None: opb[cur].wait() torch.matmul(A, B_list[cur].transpose(0, 1), out=C_list[cur]) opr[cur] = dist.reduce(C_list[cur], dst=src_c, group=row_group, async_op=True) cur = 1 - cur src_b += summa_dim src_c += 1 for op in opr: op.wait() if summa_dim - 2 == col_rank: C.copy_(C_list[cur]) if summa_dim - 1 == col_rank: C.copy_(C_list[1 - cur]) out = C.reshape(out_shape) if ctx: ctx.summa_dim = summa_dim ctx.row_rank = row_rank ctx.col_rank = col_rank ctx.row_parallel_mode = row_parallel_mode ctx.col_parallel_mode = col_parallel_mode ctx.A_shape = A_shape ctx.B_shape = B_shape ctx.data_parallel_rank = data_parallel_rank ctx.pipeline_parallel_rank = pipeline_parallel_rank ctx.pipeline_parallel_size = pipeline_parallel_size ctx.tensor_parallel_size = tensor_parallel_size return out @staticmethod @custom_bwd def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]: A, B = ctx.saved_tensors with torch.no_grad(): A_grad = Matmul_AB_2D.apply(output_grad, B, ctx.summa_dim, ctx.A_shape, ctx.row_rank, ctx.col_rank, ctx.row_parallel_mode, ctx.col_parallel_mode, ctx.data_parallel_rank, ctx.pipeline_parallel_rank, ctx.pipeline_parallel_size, ctx.tensor_parallel_size) B_grad = Matmul_ATB_2D.apply(output_grad, A, ctx.summa_dim, ctx.B_shape, ctx.row_rank, ctx.col_rank, ctx.row_parallel_mode, ctx.col_parallel_mode, ctx.data_parallel_rank, ctx.pipeline_parallel_rank, ctx.pipeline_parallel_size, ctx.tensor_parallel_size) return A_grad, B_grad, None, None, None, None, None, None, None, None, None, None class Matmul_ATB_2D(torch.autograd.Function): """Matrix multiplication for :math:`C = A^TB` """ @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward( ctx: Any, A: Tensor, B: Tensor, summa_dim: int, out_shape: Tuple[int, ...], row_rank: int, col_rank: int, row_parallel_mode: ParallelMode, col_parallel_mode: ParallelMode, data_parallel_rank: int, pipeline_parallel_rank: int, pipeline_parallel_size: int, tensor_parallel_size: int, ) -> Tensor: assert A.shape[-2] == B.shape[-2], \ 'Invalid shapes: A={}, B={} for ATB.'.format(A.shape, B.shape) if ctx: ctx.save_for_backward(A, B) A_shape = A.shape A = A.reshape((-1, A_shape[-1])) B_shape = B.shape B = B.reshape((-1, B_shape[-1])) C_shape = (A.shape[-1], B.shape[-1]) C = torch.empty(C_shape, dtype=A.dtype, device=get_current_device()) # use circular buffer to store the communication tensor # 2 is enough for all cases A_list = [torch.empty_like(A) for _ in range(2)] C_list = [torch.empty_like(C) for _ in range(2)] row_group = gpc.get_group(row_parallel_mode) col_group = gpc.get_group(col_parallel_mode) src_a = summa_dim * row_rank + data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \ pipeline_parallel_rank * tensor_parallel_size src_c = col_rank + data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \ pipeline_parallel_rank * tensor_parallel_size opa = [None] * 2 opr = [None] * 2 A_list[0].copy_(A) opa[0] = dist.broadcast(A_list[0], src=src_a, group=row_group, async_op=True) cur = 0 for i in range(summa_dim): if i != summa_dim - 1: A_list[1 - cur].copy_(A) opa[1 - cur] = dist.broadcast(A_list[1 - cur], src=src_a + 1, group=row_group, async_op=True) if opr[cur] is not None: opr[cur].wait() if i - 2 == row_rank: C.copy_(C_list[cur]) if opa[cur] is not None: opa[cur].wait() torch.matmul(A_list[cur].transpose(0, 1), B, out=C_list[cur]) opr[cur] = dist.reduce(C_list[cur], dst=src_c, group=col_group, async_op=True) cur = 1 - cur src_a += 1 src_c += summa_dim for op in opr: op.wait() if summa_dim - 2 == row_rank: C.copy_(C_list[cur]) if summa_dim - 1 == row_rank: C.copy_(C_list[1 - cur]) out = C.reshape(out_shape) if ctx: ctx.summa_dim = summa_dim ctx.row_rank = row_rank ctx.col_rank = col_rank ctx.row_parallel_mode = row_parallel_mode ctx.col_parallel_mode = col_parallel_mode ctx.A_shape = A_shape ctx.B_shape = B_shape ctx.data_parallel_rank = data_parallel_rank ctx.pipeline_parallel_rank = pipeline_parallel_rank ctx.pipeline_parallel_size = pipeline_parallel_size ctx.tensor_parallel_size = tensor_parallel_size return out @staticmethod @custom_bwd def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]: A, B = ctx.saved_tensors with torch.no_grad(): A_grad = Matmul_ABT_2D.apply(B, output_grad, ctx.summa_dim, ctx.A_shape, ctx.row_rank, ctx.col_rank, ctx.row_parallel_mode, ctx.col_parallel_mode, ctx.data_parallel_rank, ctx.pipeline_parallel_rank, ctx.pipeline_parallel_size, ctx.tensor_parallel_size) B_grad = Matmul_AB_2D.apply(A, output_grad, ctx.summa_dim, ctx.B_shape, ctx.row_rank, ctx.col_rank, ctx.row_parallel_mode, ctx.col_parallel_mode, ctx.data_parallel_rank, ctx.pipeline_parallel_rank, ctx.pipeline_parallel_size, ctx.tensor_parallel_size) return A_grad, B_grad, None, None, None, None, None, None, None, None, None, None class add_bias_2d(torch.autograd.Function): """Matrix add bias: :math:`C = A + b` """ @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward( ctx: Any, input_: Tensor, bias: Tensor, output_size_per_partition: int, row_rank: int, col_rank: int, row_parallel_mode: ParallelMode, col_parallel_mode: ParallelMode, skip_bias_add: bool, data_parallel_rank: int, pipeline_parallel_rank: int, pipeline_parallel_size: int, tensor_parallel_size: int, ) -> Tensor: bias_temp = all_gather(bias, -1, col_parallel_mode) ctx.row_rank = row_rank ctx.col_rank = col_rank ctx.row_parallel_mode = row_parallel_mode ctx.col_parallel_mode = col_parallel_mode ctx.bias = skip_bias_add ctx.data_parallel_rank = data_parallel_rank ctx.pipeline_parallel_rank = pipeline_parallel_rank ctx.pipeline_parallel_size = pipeline_parallel_size ctx.tensor_parallel_size = tensor_parallel_size if skip_bias_add: return bias_temp else: output = input_ + bias_temp return output @staticmethod @custom_bwd def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]: col_parallel_mode = ctx.col_parallel_mode if ctx.bias: grad = reduce_scatter(output_grad, -1, col_parallel_mode) return None, grad, None, None, None, None, None, None, None, None, None, None else: reduce_dim = tuple(range(output_grad.ndim - 1)) reduce = torch.sum(output_grad, dim=reduce_dim) grad = reduce_scatter(reduce, -1, col_parallel_mode) return output_grad, grad, None, None, None, None, None, None, None, None, None, None class layernorm_2d(torch.autograd.Function): @staticmethod @custom_fwd(cast_inputs=torch.float32) def forward(ctx: Any, input_: Tensor, E_x: Tensor, Var_x: Tensor, hidden_size: int, row_parallel_mode: ParallelMode, col_parallel_mode: ParallelMode) -> Tensor: input_ = input_ - E_x # in here, input = x - E[x], Var_x = 1 / sqrt(Var[x] + eps) ctx.normalized_shape = hidden_size output = input_ * Var_x ctx.save_for_backward(output, Var_x) ctx.row_parallel_mode = row_parallel_mode ctx.col_parallel_mode = col_parallel_mode return output @staticmethod @custom_bwd def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]: row_parallel_mode = ctx.row_parallel_mode col_parallel_mode = ctx.col_parallel_mode x, Var_x = ctx.saved_tensors # in here, Var_x = 1 / sqrt(Var[x] + eps), x = (x - E[x]) * Var_x output_grad_sum = torch.sum(output_grad, dim=-1, keepdim=True) torch.distributed.all_reduce(output_grad_sum, group=gpc.get_group(row_parallel_mode)) output_grad_sum /= ctx.normalized_shape output_grad_mul_x_sum = torch.sum(output_grad * x, dim=-1, keepdim=True) torch.distributed.all_reduce(output_grad_mul_x_sum, group=gpc.get_group(row_parallel_mode)) output_grad_mul_x_sum /= ctx.normalized_shape input_grad = output_grad.clone() input_grad -= x * output_grad_mul_x_sum input_grad -= output_grad_sum input_grad *= Var_x return input_grad, None, None, None, None, None class all_gather_weight_2d(torch.autograd.Function): @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward(ctx: Any, inputs: Tensor, dim: int, summa_dim: int, col_parallel_mode: ParallelMode) -> Tensor: ctx.dim = dim ctx.summa_dim = summa_dim ctx.row_rank = gpc.get_local_rank(col_parallel_mode) outputs = all_gather(inputs, dim, col_parallel_mode) return outputs @staticmethod @custom_bwd def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]: grad = output_grad.chunk(ctx.summa_dim, dim=ctx.dim)[ctx.row_rank] return grad.contiguous(), None, None, None class SplitFirst(torch.autograd.Function): @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward(ctx: Any, inputs: Tensor, summa_dim: int, col_parallel_mode: ParallelMode) -> Tensor: ctx.summa_dim = summa_dim ctx.batch_size = inputs.size(0) ctx.para_mode = col_parallel_mode row_rank = gpc.get_local_rank(col_parallel_mode) outputs = inputs.chunk(summa_dim, dim=0)[row_rank] return outputs @staticmethod @custom_bwd def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]: grad_shape = (ctx.batch_size, ) + output_grad.shape[1:] grad = torch.empty(grad_shape, dtype=output_grad.dtype, device=get_current_device()) dist.all_gather(list(grad.chunk(ctx.summa_dim, dim=0)), output_grad.contiguous(), group=gpc.get_group(ctx.para_mode)) return grad, None, None def split_tensor_2d(input_: Tensor, dim: int = 0) -> Tensor: if input_.size(dim) <= 1: return input_ return torch.chunk(input_, gpc.get_world_size(ParallelMode.PARALLEL_2D_COL), dim=dim)[gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL)].contiguous() class reduce_by_batch_2d(torch.autograd.Function): """All-reduce the input from the model parallel region.""" @staticmethod def symbolic(graph, input_, reduce_mean: bool = False): output = all_reduce(input_, ParallelMode.PARALLEL_2D_COL) if reduce_mean: reduce_size = gpc.get_world_size(ParallelMode.PARALLEL_2D_COL) return output / reduce_size return output @staticmethod @custom_fwd(cast_inputs=torch.float32) def forward(ctx, input_, reduce_mean: bool = False): output = all_reduce(input_, ParallelMode.PARALLEL_2D_COL) ctx.reduce_mean = reduce_mean if reduce_mean: reduce_size = gpc.get_world_size(ParallelMode.PARALLEL_2D_COL) ctx.reduce_size = reduce_size return output.clone() / reduce_size return output.clone() @staticmethod @custom_bwd def backward(ctx, output_grad): if ctx.reduce_mean: return output_grad / ctx.reduce_size, None else: return output_grad, None