from typing import Optional from colossalai.utils import get_current_device from torch import nn from ... import init as init from ..parallel_1d import * from ..parallel_2d import * from ..parallel_2p5d import * from ..parallel_3d import * from ..utils import get_tensor_parallel_mode from ..vanilla import * _parallel_layernorm = {'2d': LayerNorm2D, '2.5d': LayerNorm2p5D, '3d': LayerNorm3D} class LayerNorm(nn.Module): def __init__(self, normalized_shape: int, eps=1e-05, dtype=None) -> None: super().__init__() tensor_parallel = get_tensor_parallel_mode() if tensor_parallel in ['None', '1d']: self.norm = nn.LayerNorm(normalized_shape, eps=eps, device=get_current_device(), dtype=dtype) else: self.norm = _parallel_layernorm[tensor_parallel](normalized_shape, eps=eps, dtype=dtype) @property def weight(self): return self.norm.weight @property def bias(self): return self.norm.bias def forward(self, *args): return self.norm(*args)