import pytest import torch import torch.distributed as dist from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing import assert_close import colossalai from colossalai.legacy.amp import convert_to_apex_amp from colossalai.nn.optimizer import HybridAdam from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn from colossalai.utils import set_seed from colossalai.utils.cuda import get_current_device from colossalai.zero import GeminiDDP, GeminiOptimizer from colossalai.zero.gemini.chunk import search_chunk_configuration from tests.components_to_test import run_fwd_bwd from tests.components_to_test.registry import non_distributed_component_funcs PLACEMENT_CONFIGS = [ {"placement_policy": "static", "shard_param_frac": 0.0}, # zero2 {"placement_policy": "static", "shard_param_frac": 1.0}, # zero3 {"placement_policy": "static", "shard_param_frac": 0.5}, # zero3-half {"placement_policy": "auto"}, ] def check_grad(model: GeminiDDP, torch_model: torch.nn.Module): chunk_manager = model.chunk_manager param_list = [p for p in model.parameters()] chunk_list = chunk_manager.get_chunks(param_list) if not model.reuse_fp16_chunk: chunk_list = [chunk.grad_chunk for chunk in chunk_list] for chunk in chunk_list: chunk_manager.access_chunk(chunk) for p0, p1 in zip(model.parameters(), torch_model.parameters()): assert_close(p0, p1.grad, rtol=1e-3, atol=5e-5) @parameterize("placement_config", PLACEMENT_CONFIGS) @parameterize("keep_gather", [False, True]) @parameterize("model_name", ["gpt2", "bert"]) @parameterize("use_grad_checkpoint", [False, True]) @parameterize("master_weights", [False, True]) def exam_gpt_fwd_bwd( placement_config, keep_gather, model_name: str, use_grad_checkpoint: bool = False, master_weights: bool = True, ): init_device = get_current_device() get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() set_seed(42) model = model_builder(use_grad_checkpoint) set_seed(42) torch_model = model_builder(use_grad_checkpoint).cuda() for torch_p, p in zip(torch_model.parameters(), model.parameters()): torch_p.data.copy_(p.data) world_size = torch.distributed.get_world_size() config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100) config_dict[world_size]["chunk_size"] = 5000 config_dict[world_size]["keep_gathered"] = keep_gather model = GeminiDDP( model, config_dict, init_device, pin_memory=True, **placement_config, master_weights=master_weights ) optimizer = HybridAdam(model.parameters(), lr=1e-3) zero_optim = GeminiOptimizer(optimizer, model, initial_scale=1) rank = dist.get_rank() amp_config = dict(opt_level="O2", keep_batchnorm_fp32=False, loss_scale=1, master_weights=master_weights) torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3) torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config) torch_model = DDP(torch_model, device_ids=[rank]) set_seed(rank) for i, (input_ids, label) in enumerate(train_dataloader): # you can only test a single fwd + bwd. # after bwd param is grad for Gemini, due to the chunk reuse optimization. if i > 0: break input_ids, label = input_ids.cuda(), label.cuda() torch_optim.zero_grad() zero_optim.zero_grad() # set random seed is same as torch_model.eval() set_seed(42) torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim) set_seed(42) loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim) assert torch.equal(torch_loss, loss) check_grad(model, torch_model) def run_dist(rank, world_size, port): config = {} colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") exam_gpt_fwd_bwd() @pytest.mark.dist @pytest.mark.parametrize("world_size", [1, 4]) @rerun_if_address_is_in_use() def test_gpt(world_size): spawn(run_dist, world_size) if __name__ == "__main__": test_gpt(1)