import torch from torch.fx import symbolic_trace from colossalai.fx._compatibility import is_compatible_with_meta from colossalai.fx.passes.meta_info_prop import MetaInfoProp, TensorMetadata from colossalai.testing import clear_cache_before_run if is_compatible_with_meta(): from colossalai.fx.profiler import MetaTensor BATCH_SIZE = 2 DIM_IN = 4 DIM_OUT = 16 def meta_check(meta_info_spec: TensorMetadata, orig_tensor: torch.Tensor): assert meta_info_spec.shape == orig_tensor.shape assert meta_info_spec.dtype == orig_tensor.dtype assert meta_info_spec.stride == orig_tensor.stride() assert meta_info_spec.numel == orig_tensor.numel() @clear_cache_before_run() def test_meta_info_prop(): model = torch.nn.Linear(DIM_IN, DIM_OUT) input_sample = torch.rand(BATCH_SIZE, DIM_IN, device="meta") if is_compatible_with_meta(): input_sample = MetaTensor(input_sample, fake_device="cpu") orig_output = model(input_sample) gm = symbolic_trace(model) MetaInfoProp(gm).run(input_sample) for node in gm.graph.nodes: if node.op == "placeholder": meta_check(node.meta["tensor_meta"], input_sample) if node.op == "output": meta_check(node.meta["tensor_meta"], orig_output) if __name__ == "__main__": test_meta_info_prop()