# Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import math from typing import Optional, Callable, List, Tuple, Sequence import numpy as np import torch import torch.nn as nn from .checkpointing import get_checkpoint_fn from .tensor_utils import ( permute_final_dims, flatten_final_dims, _chunk_slice, ) def _prod(nums): out = 1 for n in nums: out = out * n return out def _calculate_fan(linear_weight_shape, fan="fan_in"): fan_out, fan_in = linear_weight_shape if fan == "fan_in": f = fan_in elif fan == "fan_out": f = fan_out elif fan == "fan_avg": f = (fan_in + fan_out) / 2 else: raise ValueError("Invalid fan option") return f def glorot_uniform_init_(weights): nn.init.xavier_uniform_(weights, gain=1) def final_init_(weights): with torch.no_grad(): weights.fill_(0.0) def gating_init_(weights): with torch.no_grad(): weights.fill_(0.0) def normal_init_(weights): torch.nn.init.kaiming_normal_(weights, nonlinearity="linear") def ipa_point_weights_init_(weights): with torch.no_grad(): softplus_inverse_1 = 0.541324854612918 weights.fill_(softplus_inverse_1) class Linear(nn.Linear): """ A Linear layer with built-in nonstandard initializations. Called just like torch.nn.Linear. Implements the initializers in 1.11.4, plus some additional ones found in the code. """ def __init__( self, in_dim: int, out_dim: int, bias: bool = True, init: str = "default", init_fn: Optional[Callable[[torch.Tensor, torch.Tensor], None]] = None, ): """ Args: in_dim: The final dimension of inputs to the layer out_dim: The final dimension of layer outputs bias: Whether to learn an additive bias. True by default init: The initializer to use. Choose from: "default": LeCun fan-in truncated normal initialization "relu": He initialization w/ truncated normal distribution "glorot": Fan-average Glorot uniform initialization "gating": Weights=0, Bias=1 "normal": Normal initialization with std=1/sqrt(fan_in) "final": Weights=0, Bias=0 Overridden by init_fn if the latter is not None. init_fn: A custom initializer taking weight and bias as inputs. Overrides init if not None. """ super(Linear, self).__init__(in_dim, out_dim, bias=bias) if bias: with torch.no_grad(): self.bias.fill_(0) if init_fn is not None: init_fn(self.weight, self.bias) else: if init == "default": normal_init_(self.weight) elif init == "relu": normal_init_(self.weight) elif init == "glorot": glorot_uniform_init_(self.weight) elif init == "gating": gating_init_(self.weight) if bias: with torch.no_grad(): self.bias.fill_(1.0) elif init == "normal": normal_init_(self.weight) elif init == "final": final_init_(self.weight) else: raise ValueError("Invalid init string.") class LayerNorm(nn.Module): def __init__(self, c_in, eps=1e-5): super(LayerNorm, self).__init__() self.c_in = (c_in,) self.eps = eps self.weight = nn.Parameter(torch.ones(c_in)) self.bias = nn.Parameter(torch.zeros(c_in)) def forward(self, x): out = nn.functional.layer_norm( x, self.c_in, self.weight, self.bias, self.eps, ) return out @torch.jit.ignore def softmax(t: torch.Tensor, dim: int = -1) -> torch.Tensor: """ Softmax, but without automatic casting to fp32 when the input is of type bfloat16 """ s = torch.nn.functional.softmax(t, dim=dim) return s #@torch.jit.script def _attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, biases: List[torch.Tensor]) -> torch.Tensor: # [*, H, Q, C_hidden] query = permute_final_dims(query, (1, 0, 2)) # [*, H, C_hidden, K] key = permute_final_dims(key, (1, 2, 0)) # [*, H, V, C_hidden] value = permute_final_dims(value, (1, 0, 2)) # [*, H, Q, K] a = torch.matmul(query, key) for b in biases: a += b a = softmax(a, -1) # [*, H, Q, C_hidden] a = torch.matmul(a, value) # [*, Q, H, C_hidden] a = a.transpose(-2, -3) return a @torch.jit.ignore def _attention_chunked_trainable( query, key, value, biases, chunk_size, chunk_dim, checkpoint, ): if (checkpoint and len(biases) > 2): raise ValueError("Checkpointed version permits only permits two bias terms") def _checkpointable_attention(q, k, v, b1, b2): bs = [b for b in [b1, b2] if b is not None] return _attention(q, k, v, bs) o_chunks = [] checkpoint_fn = get_checkpoint_fn() count = query.shape[chunk_dim] for start in range(0, count, chunk_size): end = start + chunk_size idx = [slice(None)] * len(query.shape) idx[chunk_dim] = slice(start, end) idx_tup = tuple(idx) q_chunk = query[idx_tup] k_chunk = key[idx_tup] v_chunk = value[idx_tup] def _slice_bias(b): idx[chunk_dim] = (slice(start, end) if b.shape[chunk_dim] != 1 else slice(None)) return b[tuple(idx)] if (checkpoint): bias_1_chunk, bias_2_chunk = [ _slice_bias(b) if b is not None else None for b in (biases + [None, None])[:2] ] o_chunk = checkpoint_fn(_checkpointable_attention, q_chunk, k_chunk, v_chunk, bias_1_chunk, bias_2_chunk) else: bias_chunks = [_slice_bias(b) for b in biases] o_chunk = _attention(q_chunk, k_chunk, v_chunk, bias_chunks) o_chunks.append(o_chunk) o = torch.cat(o_chunks, dim=chunk_dim) return o class Attention(nn.Module): """ Standard multi-head attention using AlphaFold's default layer initialization. Allows multiple bias vectors. """ def __init__( self, c_q: int, c_k: int, c_v: int, c_hidden: int, no_heads: int, gating: bool = True, ): """ Args: c_q: Input dimension of query data c_k: Input dimension of key data c_v: Input dimension of value data c_hidden: Per-head hidden dimension no_heads: Number of attention heads gating: Whether the output should be gated using query data """ super(Attention, self).__init__() self.c_q = c_q self.c_k = c_k self.c_v = c_v self.c_hidden = c_hidden self.no_heads = no_heads self.gating = gating # DISCREPANCY: c_hidden is not the per-head channel dimension, as # stated in the supplement, but the overall channel dimension. self.linear_q = Linear(self.c_q, self.c_hidden * self.no_heads, bias=False, init="glorot") self.linear_k = Linear(self.c_k, self.c_hidden * self.no_heads, bias=False, init="glorot") self.linear_v = Linear(self.c_v, self.c_hidden * self.no_heads, bias=False, init="glorot") self.linear_o = Linear(self.c_hidden * self.no_heads, self.c_q, init="final") self.linear_g = None if self.gating: self.linear_g = Linear(self.c_q, self.c_hidden * self.no_heads, init="gating") self.sigmoid = nn.Sigmoid() def _prep_qkv(self, q_x: torch.Tensor, kv_x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: # [*, Q/K/V, H * C_hidden] q = self.linear_q(q_x) k = self.linear_k(kv_x) v = self.linear_v(kv_x) # [*, Q/K, H, C_hidden] q = q.view(q.shape[:-1] + (self.no_heads, -1)) k = k.view(k.shape[:-1] + (self.no_heads, -1)) v = v.view(v.shape[:-1] + (self.no_heads, -1)) q /= math.sqrt(self.c_hidden) return q, k, v def _wrap_up(self, o: torch.Tensor, q_x: torch.Tensor) -> torch.Tensor: if (self.linear_g is not None): g = self.sigmoid(self.linear_g(q_x)) # [*, Q, H, C_hidden] g = g.view(g.shape[:-1] + (self.no_heads, -1)) o = o * g # [*, Q, H * C_hidden] o = flatten_final_dims(o, 2) # [*, Q, C_q] o = self.linear_o(o) return o def forward( self, q_x: torch.Tensor, kv_x: torch.Tensor, biases: Optional[List[torch.Tensor]] = None, use_lma: bool = False, q_chunk_size: Optional[int] = None, kv_chunk_size: Optional[int] = None, ) -> torch.Tensor: """ Args: q_x: [*, Q, C_q] query data kv_x: [*, K, C_k] key data biases: List of biases that broadcast to [*, H, Q, K] use_lma: Whether to use low-memory attention q_chunk_size: Query chunk size (for LMA) kv_chunk_size: Key/Value chunk size (for LMA) Returns [*, Q, C_q] attention update """ if (biases is None): biases = [] if (use_lma and (q_chunk_size is None or kv_chunk_size is None)): raise ValueError("If use_lma is specified, q_chunk_size and kv_chunk_size must " "be provided") q, k, v = self._prep_qkv(q_x, kv_x) if (use_lma): biases = [b.expand(b.shape[:-2] + (q_x.shape[-2],) + (kv_x.shape[-2],)) for b in biases] o = _lma(q, k, v, biases, q_chunk_size, kv_chunk_size) else: o = _attention(q, k, v, biases) o = self._wrap_up(o, q_x) return o class GlobalAttention(nn.Module): def __init__(self, c_in, c_hidden, no_heads, inf, eps): super(GlobalAttention, self).__init__() self.c_in = c_in self.c_hidden = c_hidden self.no_heads = no_heads self.inf = inf self.eps = eps self.linear_q = Linear(c_in, c_hidden * no_heads, bias=False, init="glorot") self.linear_k = Linear( c_in, c_hidden, bias=False, init="glorot", ) self.linear_v = Linear( c_in, c_hidden, bias=False, init="glorot", ) self.linear_g = Linear(c_in, c_hidden * no_heads, init="gating") self.linear_o = Linear(c_hidden * no_heads, c_in, init="final") self.sigmoid = nn.Sigmoid() def forward(self, m: torch.Tensor, mask: torch.Tensor) -> torch.Tensor: # [*, N_res, C_in] q = torch.sum(m * mask.unsqueeze(-1), dim=-2) / (torch.sum(mask, dim=-1)[..., None] + self.eps) # [*, N_res, H * C_hidden] q = self.linear_q(q) q *= (self.c_hidden**(-0.5)) # [*, N_res, H, C_hidden] q = q.view(q.shape[:-1] + (self.no_heads, -1)) # [*, N_res, N_seq, C_hidden] k = self.linear_k(m) v = self.linear_v(m) # [*, N_res, H, N_seq] a = torch.matmul( q, k.transpose(-1, -2), # [*, N_res, C_hidden, N_seq] ) bias = (self.inf * (mask - 1))[..., :, None, :] a += bias a = softmax(a) # [*, N_res, H, C_hidden] o = torch.matmul( a, v, ) # [*, N_res, N_seq, C_hidden] g = self.sigmoid(self.linear_g(m)) # [*, N_res, N_seq, H, C_hidden] g = g.view(g.shape[:-1] + (self.no_heads, -1)) # [*, N_res, N_seq, H, C_hidden] o = o.unsqueeze(-3) * g # [*, N_res, N_seq, H * C_hidden] o = o.reshape(o.shape[:-2] + (-1,)) # [*, N_res, N_seq, C_in] m = self.linear_o(o) return m def _lma( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, biases: List[torch.Tensor], q_chunk_size: int, kv_chunk_size: int, ): no_q, no_kv = q.shape[-3], k.shape[-3] # [*, Q, H, C_hidden] o = q.new_zeros(q.shape) for q_s in range(0, no_q, q_chunk_size): q_chunk = q[..., q_s:q_s + q_chunk_size, :, :] large_bias_chunks = [b[..., q_s:q_s + q_chunk_size, :] for b in biases] maxes = [] weights = [] values = [] for kv_s in range(0, no_kv, kv_chunk_size): k_chunk = k[..., kv_s:kv_s + kv_chunk_size, :, :] v_chunk = v[..., kv_s:kv_s + kv_chunk_size, :, :] small_bias_chunks = [b[..., kv_s:kv_s + kv_chunk_size] for b in large_bias_chunks] a = torch.einsum( "...qhd,...khd->...hqk", q_chunk, k_chunk, ) for b in small_bias_chunks: a += b a = a.transpose(-2, -3) max_a = torch.max(a, dim=-1, keepdim=True)[0] exp_a = torch.exp(a - max_a) exp_v = torch.einsum("...vhf,...qhv->...qhf", v_chunk, exp_a) maxes.append(max_a.detach().squeeze(-1)) weights.append(torch.sum(exp_a, dim=-1)) values.append(exp_v) chunk_max = torch.stack(maxes, dim=-3) chunk_weights = torch.stack(weights, dim=-3) chunk_values = torch.stack(values, dim=-4) global_max = torch.max(chunk_max, dim=-3, keepdim=True)[0] max_diffs = torch.exp(chunk_max - global_max) chunk_values *= max_diffs.unsqueeze(-1) chunk_weights *= max_diffs all_values = torch.sum(chunk_values, dim=-4) all_weights = torch.sum(chunk_weights.unsqueeze(-1), dim=-4) q_chunk_out = all_values / all_weights o[..., q_s:q_s + q_chunk_size, :, :] = q_chunk_out return o