import math from enum import Enum from typing import Any, Dict, Set, Tuple import torch import torch.distributed as dist from torch.nn import Parameter from torch.optim import Optimizer from colossalai.amp.naive_amp.grad_scaler import DynamicGradScaler from colossalai.gemini.chunk import Chunk, ChunkManager from colossalai.logging import get_dist_logger from colossalai.nn.optimizer import ColossalaiOptimizer, CPUAdam, FusedAdam, HybridAdam from colossalai.nn.parallel.data_parallel import ZeroDDP from colossalai.utils import disposable, get_current_device, is_ddp_ignored _AVAIL_OPTIM_LIST = {FusedAdam, CPUAdam, HybridAdam} class OptimState(Enum): SCALED = 0 UNSCALED = 1 class ZeroOptimizer(ColossalaiOptimizer): """A wrapper for optimizer. ``ZeroDDP`` and ``ZeroOptimizer`` implement Zero Redundancy Optimizer (ZeRO state-3). Note: You must use ``ZeroDDP`` with ``ZeroOptimizer``. Note: Make sure you set ``placement_policy`` of ``GeminiManager`` to `"auto"`, if you set ``gpu_margin_mem_ratio > 0``. Args: optim (Optimizer): An Optimizer instance. module (ZeroDDP): A ``ZeroDDP`` instance. gpu_margin_mem_ratio (float, optional): The ratio of GPU remaining memory (after the first forward-backward) which will be used when using hybrid CPU optimizer. This argument is meaningless when `placement_policy` of `GeminiManager` is not "auto". Defaults to 0.0. initial_scale (float, optional): Initial scale used by DynamicGradScaler. Defaults to 2**32. min_scale (float, optional): Min scale used by DynamicGradScaler. Defaults to 1. growth_factor (float, optional): growth_factor used by DynamicGradScaler. Defaults to 2. backoff_factor (float, optional): backoff_factor used by DynamicGradScaler. Defaults to 0.5. growth_interval (float, optional): growth_interval used by DynamicGradScaler. Defaults to 1000. hysteresis (float, optional): hysteresis used by DynamicGradScaler. Defaults to 2. max_scale (int, optional): max_scale used by DynamicGradScaler. Defaults to 2**32. """ def __init__(self, optim: Optimizer, module: ZeroDDP, gpu_margin_mem_ratio: float = 0.0, initial_scale: float = 2**32, min_scale: float = 1, growth_factor: float = 2, backoff_factor: float = 0.5, growth_interval: int = 1000, hysteresis: int = 2, max_scale: float = 2**32, clipping_norm: float = 0.0, norm_type: float = 2.0, **defaults: Any): super().__init__(optim) assert isinstance(module, ZeroDDP) assert type(optim) in _AVAIL_OPTIM_LIST, "you should use the optimizer in the available list" self.module = module self.gemini_manager = module.gemini_manager self.chunk_manager: ChunkManager = self.gemini_manager.chunk_manager self.optim_state = OptimState.UNSCALED self.param_to_range: Dict[Parameter, Tuple[int, int]] = dict() self.param_to_chunk32: Dict[Parameter, Chunk] = dict() self.chunk16_set: Set[Chunk] = set() self.clipping_flag = clipping_norm > 0.0 self.max_norm = clipping_norm if self.clipping_flag: assert norm_type == 2.0, "ZeroOptimizer only supports L2 norm now" params_list = [p for p in module.parameters() if not is_ddp_ignored(p)] for p, fp32_p in zip(params_list, module.fp32_params): chunk_16 = self.chunk_manager.get_chunk(p) if chunk_16 not in self.chunk16_set: chunk_16.l2_norm_flag = self.clipping_flag self.chunk16_set.add(chunk_16) self.__init__optimizer() # Grad scaler self.grad_scaler = DynamicGradScaler(initial_scale=initial_scale, min_scale=min_scale, growth_factor=growth_factor, backoff_factor=backoff_factor, growth_interval=growth_interval, hysteresis=hysteresis, max_scale=max_scale) self._found_overflow: torch.Tensor = torch.zeros(1, dtype=torch.int64, device=get_current_device()) self._logger = get_dist_logger() self.gpu_margin_mem_ratio: float = float(gpu_margin_mem_ratio) assert 0.0 <= self.gpu_margin_mem_ratio <= 1.0, f'gpu_margin_mem_ratio must >=0.0 and <=1.0' # Only move fp32 shards from CPU to GPU when user allows and inner optimizer is valid # Inner optimizer must support optimizing hybrid (CPU and CUDA) tensors, # and it must set `num_fp32_shards_per_param` correctly self._should_move_fp32_params_h2d: bool = self.gemini_manager.is_cuda_margin_mem_avail and self.gpu_margin_mem_ratio > 0.0 and getattr( optim, 'num_fp32_shards_per_param', 0) >= 2 if self.gpu_margin_mem_ratio > 0.0 and not self.gemini_manager.is_cuda_margin_mem_avail: self._logger.warning(f'gpu_margin_mem_ratio is meaningless when placement_policy is not "auto"', ranks=[0]) self._register_states = disposable(self._register_states_) def _set_grad_ptr(self): for group in self.param_groups: for fake_param in group['params']: chunk32 = self.param_to_chunk32[fake_param] begin, end = self.param_to_range[fake_param] chunk16 = chunk32.paired_chunk fake_param.data = chunk16.payload[begin:end] fake_param.grad = fake_param.data fake_param.data = chunk32.payload[begin:end] def _update_fp16_params(self): none_tensor = torch.empty([0]) for group in self.param_groups: for fake_param in group['params']: assert fake_param.grad is None fake_param.data = none_tensor for chunk16 in self.chunk16_set: chunk16.optim_update() def _check_overflow(self): # clear previous overflow record self._found_overflow.fill_(self.module.overflow_counter) # all-reduce across global group dist.all_reduce(self._found_overflow) return self._found_overflow.item() > 0 def _clear_global_norm(self) -> None: for c16 in self.chunk16_set: c16.l2_norm = None def _calc_global_norm(self) -> float: norm_sqr: float = 0.0 group_to_norm = dict() for c16 in self.chunk16_set: assert c16.l2_norm is not None if c16.is_gathered: norm_sqr += c16.l2_norm else: # this chunk is sharded, use communication to collect total norm if c16.torch_pg not in group_to_norm: group_to_norm[c16.torch_pg] = 0.0 group_to_norm[c16.torch_pg] += c16.l2_norm c16.l2_norm = None # clear l2 norm comm_buffer = torch.zeros(1, dtype=torch.float, device=get_current_device()) for group, part_norm in group_to_norm.items(): comm_buffer.fill_(part_norm) dist.all_reduce(comm_buffer, group=group) norm_sqr += comm_buffer.item() global_norm = math.sqrt(norm_sqr) return global_norm def _get_combined_scale(self): loss_scale = 1 if self.optim_state == OptimState.SCALED: loss_scale = self.loss_scale self.optim_state = OptimState.UNSCALED combined_scale = loss_scale if self.clipping_flag: total_norm = self._calc_global_norm() clip = ((total_norm / loss_scale) + 1e-6) / self.max_norm if clip > 1: combined_scale = clip * loss_scale if combined_scale == 1: return -1 else: return combined_scale @property def loss_scale(self): return self.grad_scaler.scale.item() def zero_grad(self, *args, **kwargs): self.module.overflow_counter = 0 return self.optim.zero_grad(set_to_none=True) def step(self, *args, **kwargs): self._maybe_move_fp32_params() self._set_grad_ptr() found_inf = self._check_overflow() if found_inf: self.optim_state = OptimState.UNSCALED # no need to unscale grad self.grad_scaler.update(found_inf) # update gradient scaler self._logger.info(f'Found overflow. Skip step') self._clear_global_norm() # clear recorded norm self.zero_grad() # reset all gradients self._update_fp16_params() return # get combined scale. combined scale = loss scale * clipping norm # so that gradient = gradient / combined scale combined_scale = self._get_combined_scale() self.grad_scaler.update(found_inf) ret = self.optim.step(div_scale=combined_scale, *args, **kwargs) self._register_states() self.zero_grad() self._update_fp16_params() return ret def clip_grad_norm(self, model: torch.nn.Module, max_norm: float, norm_type: float = 2.0): raise NotImplementedError def backward(self, loss: torch.Tensor): loss = self.loss_scale * loss self.optim_state = OptimState.SCALED self.module.backward(loss) def backward_by_grad(self, tensor: torch.Tensor, grad: torch.Tensor): # This function is called except the last stage of pipeline parallel # It receives the scaled grad from the previous rank # No need to scale the grad again # Need to unscale when optimizing self.optim_state = OptimState.SCALED self.module.backward_by_grad(tensor, grad) def _maybe_move_fp32_params(self): if self._should_move_fp32_params_h2d: self._should_move_fp32_params_h2d = False available_cuda_margin_mem = self.gemini_manager.cuda_margin_mem * self.gpu_margin_mem_ratio fp32_params_available_cuda_margin_mem = available_cuda_margin_mem / self.optim.num_fp32_shards_per_param fp32_params_used_cuda_margin_mem = 0 for group in self.param_groups: for fake_param in group['params']: chunk32 = self.param_to_chunk32[fake_param] chunk16 = chunk32.paired_chunk if chunk32.device_type == 'cuda': continue if fp32_params_used_cuda_margin_mem + chunk32.payload_mem < fp32_params_available_cuda_margin_mem: self.chunk_manager.move_chunk(chunk32, get_current_device()) # stores grad now self.chunk_manager.move_chunk(chunk16, get_current_device()) self.module.set_chunk_grad_device(chunk16, get_current_device()) fp32_params_used_cuda_margin_mem += chunk32.payload_mem for group in self.param_groups: for fake_param in group['params']: chunk32 = self.param_to_chunk32[fake_param] if chunk32.device_type == 'cuda': state = self.optim.state[fake_param] for k, v in state.items(): if isinstance(v, torch.Tensor): state[k] = v.to(get_current_device()) def _register_states_(self): for group in self.optim.param_groups: for p in group['params']: state = self.optim.state[p] for val in state.values(): if isinstance(val, torch.Tensor): self.chunk_manager.add_extern_static_tensor(val) def __init__optimizer(self): def get_range_pair(local_chunk: Chunk, local_param: Parameter): param_info = local_chunk.tensors_info[local_param] if local_chunk.keep_gathered: return param_info.offset, param_info.end begin = max(0, param_info.offset - local_chunk.shard_begin) end = min(local_chunk.shard_size, param_info.end - local_chunk.shard_begin) return begin, end for group in self.optim.param_groups: fake_params_list = list() for param in group['params']: chunk16 = self.chunk_manager.get_chunk(param) range_pair = get_range_pair(chunk16, param) if range_pair[0] >= range_pair[1]: continue fake_param = torch.nn.Parameter(torch.empty([0])) self.param_to_chunk32[fake_param] = chunk16.paired_chunk self.param_to_range[fake_param] = range_pair fake_params_list.append(fake_param) group['params'] = fake_params_list