from time import time from typing import Optional import torch import torch.distributed as dist import torch.nn as nn from colossalai.gemini.chunk import ChunkManager from colossalai.gemini.chunk.search_utils import search_chunk_configuration from colossalai.utils import is_ddp_ignored def init_chunk_manager(model: nn.Module, init_device: Optional[torch.device] = None, hidden_dim: Optional[int] = None, search_range_mb: Optional[float] = None, min_chunk_size_mb: Optional[float] = None, filter_exlarge_params: Optional[bool] = None) -> ChunkManager: kwargs_dict = dict() if hidden_dim: search_interval_byte = hidden_dim else: search_interval_byte = 1024 # 1kb kwargs_dict["search_interval_byte"] = search_interval_byte if search_range_mb: kwargs_dict["search_range_mb"] = search_range_mb if min_chunk_size_mb: kwargs_dict["min_chunk_size_mb"] = min_chunk_size_mb if filter_exlarge_params: kwargs_dict["filter_exlarge_params"] = filter_exlarge_params params_sizes = [p.numel() for p in model.parameters() if not is_ddp_ignored(p)] total_size = sum(params_sizes) / 1024**2 dist.barrier() begin = time() config_dict, wasted_size = search_chunk_configuration(model, **kwargs_dict) dist.barrier() end = time() span_s = end - begin wasted_size /= 1024**2 if dist.get_rank() == 0: print("searching chunk configuration is completed in {:.2f} s.\n".format(span_s), "used number: {:.2f} MB, wasted number: {:.2f} MB\n".format(total_size, wasted_size), "total wasted percentage is {:.2f}%".format(100 * wasted_size / (total_size + wasted_size)), sep='', flush=True) dist.barrier() chunk_manager = ChunkManager(config_dict, init_device) return chunk_manager