import torch import torch.distributed as dist from torch.distributed.distributed_c10d import _get_default_group from torch.testing import assert_close from colossalai import launch from colossalai.accelerator import get_accelerator from colossalai.quantization.fp8 import all_to_all_single_fp8 from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn dist.all_to_all_single @parameterize("shape", [(4), (8, 7), (4, 8, 16)]) @parameterize("dtype", [torch.bfloat16, torch.float16]) @parameterize("fp8_format", ["e4m3", "e5m2"]) def check_4gpu(shape, dtype, fp8_format): x = torch.rand(shape, dtype=dtype, device=get_accelerator().get_current_device()) output = torch.empty_like(x) output_fp8 = torch.empty_like(x) all_to_all_single_fp8(output_fp8, x, group=_get_default_group(), fp8_format=fp8_format) dist.all_to_all_single(output, x, group=_get_default_group()) assert_close(output, output_fp8, rtol=0.1, atol=0.1) def run_dist(rank, world_size, port): launch(rank=rank, world_size=world_size, port=port, host="localhost") check_4gpu() @rerun_if_address_is_in_use() def test_all_to_all_single(): spawn(run_dist, 4) if __name__ == "__main__": test_all_to_all_single()