import os import math import torch from tqdm import tqdm from utils.global_vars import get_timers, get_tensorboard_writer from nvidia_bert_dataset_provider import NvidiaBertDatasetProvider def evaluate(engine, args, logger, global_step): evaluate_dataset_provider = NvidiaBertDatasetProvider(args, evaluate=True) start_shard = 0 engine.eval() timers = get_timers() eval_step = 0 eval_loss = 0 cur_loss = 0 world_size = torch.distributed.get_world_size() with torch.no_grad(): for shard in range(start_shard, len(os.listdir(args.eval_data_path_prefix))): timers('eval_shard_time').start() dataset_iterator, total_length = evaluate_dataset_provider.get_shard(shard) # evaluate_dataset_provider.prefetch_shard(shard + 1) if torch.distributed.get_rank() == 0: iterator_data = tqdm(enumerate(dataset_iterator), total=(total_length // args.eval_micro_batch_size_per_gpu // world_size), colour='MAGENTA', smoothing=1) else: iterator_data = enumerate(dataset_iterator) for step, batch_data in iterator_data: #tqdm(enumerate(dataset_iterator), total=(total_length // args.train_micro_batch_size_per_gpu // world_size), colour='cyan', smoothing=1): # batch_data = pretrain_dataset_provider.get_batch(batch_index) eval_step += 1 input_ids = batch_data[0].cuda() attention_mask = batch_data[1].cuda() token_type_ids = batch_data[2].cuda() mlm_label = batch_data[3].cuda() # nsp_label = batch_data[5].cuda() output = engine(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask) loss = engine.criterion(output.logits, mlm_label)#prediction_scores evaluate_dataset_provider.prefetch_batch() eval_loss += loss.float().item() cur_loss = eval_loss / eval_step elapsed_time = timers("eval_shard_time").elapsed() elapsed_time_per_iteration = elapsed_time / eval_step ppl = math.exp(cur_loss) if args.wandb and torch.distributed.get_rank() == 0: tensorboard_log = get_tensorboard_writer() tensorboard_log.log_eval({ 'loss': cur_loss, 'ppl': ppl, 'mins_batch': elapsed_time_per_iteration }, global_step) eval_log_str = f'evaluation shard: {shard} | step: {eval_step} | elapsed_time: {elapsed_time / 60 :.3f} minutes ' + \ f'| mins/batch: {elapsed_time_per_iteration :.3f} seconds | loss: {cur_loss:.7f} | ppl: {ppl:.7f}' logger.info(eval_log_str) logger.info('-' * 100) logger.info('') evaluate_dataset_provider.release_shard() engine.train() return cur_loss