import torch import transformers from ..registry import ModelAttribute, model_zoo # =============================== # Register single-sentence T5 # =============================== # define data gen function def data_gen_for_encoder_only(): # Generated from following code snippet # # from transformers import T5Config, T5Tokenizer # config = T5Config(decoder_start_token_id=0) # tokenizer = T5Tokenizer.from_pretrained("t5-small") # input_ids = tokenizer("translate English to German: The house is wonderful.", return_tensors="pt").input_ids input_ids = torch.Tensor([[13959, 1566, 12, 2968, 10, 37, 629, 19, 1627, 5, 1, 12, 1627, 5, 1, 12]]).long() attention_mask = torch.Tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]]).long() return dict(input_ids=input_ids, attention_mask=attention_mask) def data_gen_for_conditional_generation(): # labels is generated with the following code # # labels = tokenizer("Das Haus ist wunderbar.", return_tensors="pt").input_ids data = data_gen_for_encoder_only() labels = torch.Tensor([[644, 4598, 229, 19250, 5, 1, 644, 4598, 229, 19250, 5, 1, 229, 19250, 5, 1]]).long() data['labels'] = labels return data def data_gen_for_t5_model(): # decoder_inputs_ids is obtained with the following code # decoder_input_ids = model._shift_right(input_ids) data = data_gen_for_encoder_only() decoder_input_ids = torch.Tensor([[0, 13959, 1566, 12, 2968, 10, 37, 629, 19, 1627, 5, 5, 19, 1627, 5, 5]]).long() data['decoder_input_ids'] = decoder_input_ids return data # output transform function output_transform_fn = lambda x: x # define loss funciton loss_fn_for_t5_model = lambda x: x.last_hidden_state.mean() loss_fn_for_encoder_only = lambda x: x.last_hidden_state.mean() loss_fn_for_conditional_generation = lambda x: x.loss # define model config config = transformers.T5Config(d_model=128, num_layers=2, dropout_rate=0, decoder_start_token_id=0) # register the following models # transformers.T5Model, # transformers.T5ForConditionalGeneration, # transformers.T5EncoderModel, model_zoo.register(name='transformers_t5', model_fn=lambda: transformers.T5Model(config), data_gen_fn=data_gen_for_t5_model, output_transform_fn=output_transform_fn, loss_fn=loss_fn_for_t5_model, model_attribute=ModelAttribute(has_control_flow=True)) model_zoo.register(name='transformers_t5_for_conditional_generation', model_fn=lambda: transformers.T5ForConditionalGeneration(config), data_gen_fn=data_gen_for_conditional_generation, output_transform_fn=output_transform_fn, loss_fn=loss_fn_for_conditional_generation, model_attribute=ModelAttribute(has_control_flow=True)) model_zoo.register(name='transformers_t5_encoder_model', model_fn=lambda: transformers.T5EncoderModel(config), data_gen_fn=data_gen_for_encoder_only, output_transform_fn=output_transform_fn, loss_fn=loss_fn_for_encoder_only, model_attribute=ModelAttribute(has_control_flow=True))