import argparse import resource from contextlib import nullcontext import torch from attn import replace_with_flash_attention from data_utils import RandomDataset from model_utils import format_numel_str, get_model_numel from performance_evaluator import PerformanceEvaluator from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload, MixedPrecision from tqdm import tqdm from transformers.models.llama.configuration_llama import LlamaConfig from transformers.models.llama.modeling_llama import LlamaForCausalLM import colossalai from colossalai.accelerator import get_accelerator from colossalai.booster import Booster from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, TorchFSDPPlugin from colossalai.cluster import DistCoordinator from colossalai.lazy import LazyInitContext from colossalai.nn.optimizer import HybridAdam from examples.language.data_utils import RandomDataset from examples.language.model_utils import format_numel_str, get_model_numel from examples.language.performance_evaluator import PerformanceEvaluator # ============================== # Constants # ============================== MODEL_CONFIGS = { "7b": LlamaConfig(max_position_embeddings=4096), "13b": LlamaConfig( hidden_size=5120, intermediate_size=13824, num_hidden_layers=40, num_attention_heads=40, max_position_embeddings=4096, ), "70b": LlamaConfig( hidden_size=8192, intermediate_size=28672, num_hidden_layers=80, num_attention_heads=64, max_position_embeddings=4096, num_key_value_heads=8, ), } def main(): # ============================== # Parse Arguments # ============================== parser = argparse.ArgumentParser() parser.add_argument("-c", "--config", type=str, default="7b", help="Model configuration") parser.add_argument( "-p", "--plugin", choices=["gemini", "gemini_auto", "fsdp", "fsdp_cpu", "3d", "3d_cpu"], default="gemini", help="Choose which plugin to use", ) parser.add_argument("-b", "--batch_size", type=int, default=2, help="Batch size") parser.add_argument("-s", "--num_steps", type=int, default=5, help="Number of steps to run") parser.add_argument("-i", "--ignore_steps", type=int, default=2, help="Number of steps to ignore") parser.add_argument("-g", "--grad_checkpoint", action="store_true", help="Use gradient checkpointing") parser.add_argument("-l", "--max_length", type=int, default=4096, help="Max sequence length") parser.add_argument( "-w", "--warmup_ratio", type=float, default=0.8, help="warm up ratio of non-model data. Only for gemini-auto" ) parser.add_argument("-m", "--memory_limit", type=int, help="Gemini memory limit in mb") parser.add_argument("-x", "--xformers", action="store_true", help="Use xformers") parser.add_argument("--shard_param_frac", type=float, default=1.0, help="Shard param fraction. Only for gemini") parser.add_argument("--offload_optim_frac", type=float, default=0.0, help="Offload optim fraction. Only for gemini") parser.add_argument("--offload_param_frac", type=float, default=0.0, help="Offload param fraction. Only for gemini") parser.add_argument("--tp", type=int, default=1, help="Tensor parallel size") parser.add_argument("--extra_dp", type=int, default=1, help="Extra data parallel size, used for Gemini") parser.add_argument("--pp", type=int, default=1, help="Pipeline parallel size") parser.add_argument("--mbs", type=int, default=1, help="Micro batch size of pipeline parallel") parser.add_argument("--zero", type=int, default=0, help="Zero Stage when hybrid plugin is enabled") args = parser.parse_args() colossalai.launch_from_torch({}) coordinator = DistCoordinator() def empty_init(): pass # ============================== # Initialize Booster # ============================== use_empty_init = True if args.plugin == "gemini": plugin = GeminiPlugin( precision="bf16", shard_param_frac=args.shard_param_frac, offload_optim_frac=args.offload_optim_frac, offload_param_frac=args.offload_param_frac, tp_size=args.tp, extra_dp_size=args.extra_dp, ) elif args.plugin == "gemini_auto": plugin = GeminiPlugin( placement_policy="auto", precision="bf16", warmup_non_model_data_ratio=args.warmup_ratio, tp_size=args.tp, extra_dp_size=args.extra_dp, ) elif args.plugin == "fsdp": if use_empty_init: plugin = TorchFSDPPlugin( mixed_precision=MixedPrecision( param_dtype=torch.float16, reduce_dtype=torch.float16, buffer_dtype=torch.float16 ), param_init_fn=empty_init(), ) else: plugin = TorchFSDPPlugin( mixed_precision=MixedPrecision( param_dtype=torch.float16, reduce_dtype=torch.float16, buffer_dtype=torch.float16 ) ) elif args.plugin == "fsdp_cpu": if use_empty_init: plugin = TorchFSDPPlugin( mixed_precision=MixedPrecision( param_dtype=torch.float16, reduce_dtype=torch.float16, buffer_dtype=torch.float16 ), cpu_offload=CPUOffload(offload_params=True), param_init_fn=empty_init(), ) else: plugin = TorchFSDPPlugin( mixed_precision=MixedPrecision( param_dtype=torch.float16, reduce_dtype=torch.float16, buffer_dtype=torch.float16 ), cpu_offload=CPUOffload(offload_params=True), ) elif args.plugin == "3d": plugin = HybridParallelPlugin( tp_size=args.tp, pp_size=args.pp, pp_style="interleaved", zero_stage=args.zero, num_model_chunks=2, enable_fused_normalization=torch.cuda.is_available(), microbatch_size=args.mbs, precision="bf16", ) elif args.plugin == "3d_cpu": plugin = HybridParallelPlugin( tp_size=args.tp, pp_size=args.pp, zero_stage=args.zero, cpu_offload=True, enable_fused_normalization=torch.cuda.is_available(), microbatch_size=args.mbs, initial_scale=2**8, precision="bf16", ) else: raise ValueError(f"Unknown plugin {args.plugin}") booster = Booster(plugin=plugin) # ============================== # Initialize Dataset and Dataloader # ============================== dp_size = plugin.dp_size if isinstance(plugin, HybridParallelPlugin) else coordinator.world_size config = MODEL_CONFIGS[args.config] dataset = RandomDataset( num_samples=args.batch_size * args.num_steps * dp_size, max_length=args.max_length, vocab_size=config.vocab_size ) dataloader = plugin.prepare_dataloader(dataset, batch_size=args.batch_size, shuffle=True, drop_last=True) # ============================== # Initialize Model and Optimizer # ============================== init_ctx = ( LazyInitContext(default_device=get_accelerator().get_current_device()) if isinstance(plugin, (GeminiPlugin, HybridParallelPlugin)) else nullcontext() ) with init_ctx: model = LlamaForCausalLM(config) if args.grad_checkpoint: model.gradient_checkpointing_enable() if args.xformers: replace_with_flash_attention(model) model_numel = get_model_numel(model) coordinator.print_on_master(f"Model params: {format_numel_str(model_numel)}") performance_evaluator = PerformanceEvaluator( model_numel, model.config.num_hidden_layers, model.config.hidden_size, model.config.vocab_size, args.grad_checkpoint, args.ignore_steps, dp_world_size=dp_size, ) optimizer = HybridAdam(model.parameters()) torch.set_default_dtype(torch.bfloat16) model, optimizer, _, dataloader, _ = booster.boost(model, optimizer, dataloader=dataloader) torch.set_default_dtype(torch.float) coordinator.print_on_master( f"Booster init max CUDA memory: {get_accelerator().max_memory_allocated()/1024**2:.2f} MB" ) coordinator.print_on_master( f"Booster init max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024:.2f} MB" ) if isinstance(plugin, HybridParallelPlugin) and args.pp > 1: data_iter = iter(dataloader) for step in tqdm(range(len(dataloader)), desc="Step", disable=not coordinator.is_master()): performance_evaluator.on_step_start(step) booster.execute_pipeline( data_iter, model, criterion=lambda outputs, inputs: outputs[0], optimizer=optimizer, return_loss=False ) optimizer.step() optimizer.zero_grad() performance_evaluator.on_step_end(input_ids=torch.empty(args.batch_size, args.max_length)) else: for step, batch in enumerate(tqdm(dataloader, desc="Step", disable=not coordinator.is_master())): performance_evaluator.on_step_start(step) outputs = model(**batch) loss = outputs[0] booster.backward(loss, optimizer) optimizer.step() optimizer.zero_grad() performance_evaluator.on_step_end(**batch) performance_evaluator.on_fit_end() coordinator.print_on_master(f"Max CUDA memory usage: {get_accelerator().max_memory_allocated()/1024**2:.2f} MB") if __name__ == "__main__": main()