from pathlib import Path from typing import Callable, Iterable, Iterator, List, Optional, Tuple, Union import torch import torch.nn as nn from packaging import version from torch.distributed import ProcessGroup if version.parse(torch.__version__) >= version.parse('1.12.0'): from torch.distributed.fsdp import FullStateDictConfig from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp import StateDictType from torch.distributed.fsdp.fully_sharded_data_parallel import ( BackwardPrefetch, CPUOffload, FullStateDictConfig, MixedPrecision, ShardingStrategy, ) else: raise RuntimeError("FSDP is not supported while torch version under 1.12.0.") from torch.optim import Optimizer from torch.optim.lr_scheduler import _LRScheduler as LRScheduler from torch.utils.data import DataLoader from colossalai.checkpoint_io import CheckpointIO, GeneralCheckpointIO, utils from colossalai.cluster import DistCoordinator from colossalai.interface import ModelWrapper, OptimizerWrapper from .dp_plugin_base import DPPluginBase __all__ = ['TorchFSDPPlugin'] class TorchFSDPCheckpointIO(GeneralCheckpointIO): def __init__(self) -> None: super().__init__() self.coordinator = DistCoordinator() def load_unsharded_model(self, model: nn.Module, checkpoint: str, strict: bool): checkpoint = utils.load_state_dict(checkpoint) model.load_state_dict(checkpoint) def load_unsharded_optimizer(self, optimizer: Optimizer, checkpoint: Path): checkpoint = utils.load_state_dict(checkpoint) fsdp_model = optimizer.unwrap_model() sharded_osd = FSDP.scatter_full_optim_state_dict(checkpoint, fsdp_model) optimizer.load_state_dict(sharded_osd) def save_unsharded_model(self, model: nn.Module, checkpoint: str, gather_dtensor: bool, use_safetensors: bool): """ Save model to checkpoint but only on master process. """ # the model should be unwrapped in self.load_model via ModelWrapper.unwrap cfg = FullStateDictConfig(offload_to_cpu=True, rank0_only=True) with FSDP.state_dict_type(model, StateDictType.FULL_STATE_DICT, cfg): full_model_state = model.state_dict() utils.save_state_dict(full_model_state, checkpoint_file_path=checkpoint, use_safetensors=use_safetensors) def save_unsharded_optimizer(self, optimizer: Optimizer, checkpoint: str, gather_dtensor: bool): """ Save optimizer to checkpoint but only on master process. """ assert isinstance(optimizer, FSDPOptimizerWrapper) fsdp_model = optimizer.unwrap_model() full_optimizer_state = FSDP.full_optim_state_dict(fsdp_model, optim=optimizer, rank0_only=True) utils.save_state_dict(full_optimizer_state, checkpoint_file_path=checkpoint, use_safetensors=False) def save_sharded_model(self, model: nn.Module, checkpoint: str, gather_dtensor: bool, variant: Optional[str], size_per_shard: int, use_safetensors: bool): """ Save model to checkpoint but only on master process. """ raise NotImplementedError("Sharded model checkpoint is not supported yet.") def load_sharded_model(self, model: nn.Module, checkpoint_index_file: Path, strict: bool = False, use_safetensors: bool = False, load_sub_module: bool = True): """ Load model to checkpoint but only on master process. """ raise NotImplementedError("Sharded model checkpoint is not supported yet.") def save_sharded_optimizer(self, optimizer: Optimizer, checkpoint: str, gather_dtensor: bool): """ Save optimizer to checkpoint but only on master process. """ raise NotImplementedError("Sharded optimizer checkpoint is not supported yet.") def load_sharded_optimizer(self, optimizer: Optimizer, index_file_path: str, prefix: str, size_per_shard: int): """ Load optimizer to checkpoint but only on master process. """ raise NotImplementedError("Sharded optimizer checkpoint is not supported yet.") def save_lr_scheduler(self, lr_scheduler: LRScheduler, checkpoint: str): """ Save model to checkpoint but only on master process. """ if self.coordinator.is_master(): super().save_lr_scheduler(lr_scheduler, checkpoint) class TorchFSDPModel(ModelWrapper): def __init__(self, module: nn.Module, *args, **kwargs) -> None: super().__init__(module) self.module = FSDP(module, *args, **kwargs) def unwrap(self): return self.module class FSDPOptimizerWrapper(OptimizerWrapper): def __init__(self, optimizer: Optimizer, model: nn.Module): self.model = model super().__init__(optimizer) def unwrap_model(self) -> nn.Module: return self.model class TorchFSDPPlugin(DPPluginBase): """ Plugin for PyTorch FSDP. Example: >>> from colossalai.booster import Booster >>> from colossalai.booster.plugin import TorchFSDPPlugin >>> >>> model, train_dataset, optimizer, criterion = ... >>> plugin = TorchFSDPPlugin() >>> train_dataloader = plugin.prepare_train_dataloader(train_dataset, batch_size=8) >>> booster = Booster(plugin=plugin) >>> model, optimizer, train_dataloader, criterion = booster.boost(model, optimizer, train_dataloader, criterion) Args: See https://pytorch.org/docs/stable/fsdp.html for details. """ if version.parse(torch.__version__) >= version.parse('1.12.0'): def __init__( self, process_group: Optional[ProcessGroup] = None, sharding_strategy: Optional[ShardingStrategy] = None, cpu_offload: Optional[CPUOffload] = None, auto_wrap_policy: Optional[Callable] = None, backward_prefetch: Optional[BackwardPrefetch] = None, mixed_precision: Optional[MixedPrecision] = None, ignored_modules: Optional[Iterable[torch.nn.Module]] = None, param_init_fn: Optional[Callable[[nn.Module], None]] = None, sync_module_states: bool = False, ): super().__init__() self.fsdp_kwargs = dict(process_group=process_group, sharding_strategy=sharding_strategy, cpu_offload=cpu_offload, auto_wrap_policy=auto_wrap_policy, backward_prefetch=backward_prefetch, mixed_precision=mixed_precision, ignored_modules=ignored_modules, param_init_fn=param_init_fn, sync_module_states=sync_module_states) else: raise RuntimeError("FSDP is not supported while torch version under 1.12.0.") def support_no_sync(self) -> bool: False def no_sync(self, model: nn.Module) -> Iterator[None]: raise NotImplementedError("Torch fsdp no_sync func not supported yet.") def control_precision(self) -> bool: return True def supported_precisions(self) -> List[str]: return ['fp16', 'bf16'] def control_device(self) -> bool: return True def supported_devices(self) -> List[str]: return ['cuda'] def configure( self, model: nn.Module, optimizer: Optimizer, criterion: Callable = None, dataloader: DataLoader = None, lr_scheduler: LRScheduler = None, ) -> Tuple[Union[nn.Module, OptimizerWrapper, LRScheduler, DataLoader]]: # wrap the model with PyTorch FSDP fsdp_model = TorchFSDPModel(model, device_id=torch.cuda.current_device(), **self.fsdp_kwargs) optimizer.__init__(fsdp_model.parameters(), **optimizer.defaults) if not isinstance(optimizer, FSDPOptimizerWrapper): optimizer = FSDPOptimizerWrapper(optimizer, fsdp_model) return fsdp_model, optimizer, criterion, dataloader, lr_scheduler def control_checkpoint_io(self) -> bool: return True def get_checkpoint_io(self) -> CheckpointIO: return TorchFSDPCheckpointIO()