import torch import torch.nn as nn from torch.fx import GraphModule from torch.utils.checkpoint import checkpoint from colossalai.fx import ColoTracer from colossalai.testing import clear_cache_before_run class MLP(torch.nn.Module): def __init__(self): super().__init__() self.linear1 = torch.nn.Linear(4, 4) self.linear2 = torch.nn.Linear(4, 4) def forward(self, x): x = self.linear1(x) x = self.linear2(x) return x # Simple module for demonstration class MyModule(torch.nn.Module): def __init__(self): super().__init__() self.mlp_1 = MLP() self.mlp_2 = MLP() self.output = torch.nn.Linear(4, 4) def forward(self, x): x = checkpoint(self.mlp_1, x) x = checkpoint(self.mlp_2, x) x = self.output(x) return x @clear_cache_before_run() def test_activation_checkpoint_annotation(): module = MyModule() # test tracing with activation checkpoint tracer = ColoTracer(trace_act_ckpt=True) graph = tracer.trace(module) gm = GraphModule(module, graph) for node in gm.graph.nodes: if node.name in ['mlp_1_linear1', 'mlp_1_linear2']: assert node.meta.get('activation_checkpoint', -1) == 0 for node in gm.graph.nodes: if node.name in ['mlp_2_linear1', 'mlp_2_linear2']: assert node.meta.get('activation_checkpoint', -1) == 1 tracer = ColoTracer(trace_act_ckpt=False) graph = tracer.trace(module) gm = GraphModule(module, graph) for node in gm.graph.nodes: assert not hasattr(node, 'activation_checkpoint') if __name__ == '__main__': test_activation_checkpoint_annotation()