from colossalai.context.parallel_mode import ParallelMode import torch from torch.cuda.amp import custom_bwd, custom_fwd class _VocabCrossEntropy(torch.autograd.Function): @staticmethod @custom_fwd def forward(ctx, vocab_parallel_logits, target): # Maximum value along vocab dimension across all GPUs. logits_max = torch.max(vocab_parallel_logits, dim=-1)[0] # Subtract the maximum value. vocab_parallel_logits.sub_(logits_max.unsqueeze(dim=-1)) # Create a mask of valid vocab ids (1 means it needs to be masked). target_mask = target < 0 masked_target = target.clone() masked_target[target_mask] = 0 # Get predicted-logits = logits[target]. # For Simplicity, we convert logits to a 2-D tensor with size # [*, partition-vocab-size] and target to a 1-D tensor of size [*]. logits_2d = vocab_parallel_logits.view(-1, vocab_parallel_logits.size(-1)) masked_target_1d = masked_target.view(-1) arange_1d = torch.arange(start=0, end=logits_2d.size()[0], device=logits_2d.device) predicted_logits_1d = logits_2d[arange_1d, masked_target_1d] predicted_logits_1d = predicted_logits_1d.clone().contiguous() predicted_logits = predicted_logits_1d.view_as(target) predicted_logits[target_mask] = 0.0 # Sum of exponential of logits along vocab dimension across all GPUs. exp_logits = vocab_parallel_logits torch.exp(vocab_parallel_logits, out=exp_logits) sum_exp_logits = exp_logits.sum(dim=-1) # Loss = log(sum(exp(logits))) - predicted-logit. loss = torch.log(sum_exp_logits) - predicted_logits # Store softmax, target-mask and masked-target for backward pass. exp_logits.div_(sum_exp_logits.unsqueeze(dim=-1)) ctx.save_for_backward(exp_logits, target_mask, masked_target_1d) return loss @staticmethod @custom_bwd def backward(ctx, grad_output): # Retreive tensors from the forward path. softmax, target_mask, masked_target_1d = ctx.saved_tensors # All the inputs have softmax as their gradient. grad_input = softmax # For simplicity, work with the 2D gradient. partition_vocab_size = softmax.size()[-1] grad_2d = grad_input.view(-1, partition_vocab_size) # Add the gradient from matching classes. arange_1d = torch.arange(start=0, end=grad_2d.size()[0], device=grad_2d.device) grad_2d[arange_1d, masked_target_1d] -= ( 1.0 - target_mask.view(-1).float()) # Finally elementwise multiplication with the output gradients. grad_input.mul_(grad_output.unsqueeze(dim=-1)) return grad_input, None def vocab_cross_entropy(vocab_logits, target): """helper function for the cross entropy.""" return _VocabCrossEntropy.apply(vocab_logits, target)