import torch from colossalai.fx import ColoGraphModule, ColoTracer class LinearModel(torch.nn.Module): def __init__(self, in_features, out_features): super().__init__() self.linear = torch.nn.Linear(in_features, out_features) def forward(self, x): x = self.linear(x) x = x * 2 return x class ConvModel(torch.nn.Module): def __init__(self, in_channels, out_channels, kernel_size, bias=True): super().__init__() self.conv = torch.nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, bias=bias) def forward(self, x): x = self.conv(x) x = x * 2 return x def test_linear_module(): model = LinearModel(3, 6) tracer = ColoTracer() # graph(): # %x : torch.Tensor [#users=1] = placeholder[target=x] # %linear_weight : [#users=1] = get_attr[target=linear.weight] # %linear_bias : [#users=1] = get_attr[target=linear.bias] # %linear : [#users=1] = call_function[target=torch._C._nn.linear](args = (%x, %linear_weight), kwargs = {}) # %add : [#users=1] = call_function[target=operator.add](args = (%linear, %linear_bias), kwargs = {}) # %mul : [#users=1] = call_function[target=operator.mul](args = (%add, 2), kwargs = {}) # return mul graph = tracer.trace(root=model, meta_args={'x': torch.rand(3, 3).to('meta')}) # def forward(self, x : torch.Tensor): # linear_weight = self.linear.weight # linear_bias = self.linear.bias # linear = torch._C._nn.linear(x, linear_weight); x = linear_weight = None # add = linear + linear_bias; linear = linear_bias = None # mul = add * 2; add = None # return mul gm = ColoGraphModule(model, graph) gm.recompile() node_list = list(graph.nodes) for node in node_list: if node.op == 'output': continue assert hasattr(node, '_meta_data') weight_node = node_list[1] bias_node = node_list[2] linear_node = node_list[3] add_node = node_list[4] assert weight_node._meta_data.shape == (6, 3) assert bias_node._meta_data.shape == (6,) assert linear_node._meta_data.shape == (3, 6) assert add_node._meta_data.shape == (3, 6) def test_conv_module(): model = ConvModel(3, 6, 2) tracer = ColoTracer() # graph(): # %x : torch.Tensor [#users=1] = placeholder[target=x] # %conv_weight : [#users=1] = get_attr[target=conv.weight] # %conv_bias : [#users=1] = get_attr[target=conv.bias] # %conv2d : [#users=1] = call_function[target=torch.conv2d](args = (%x, %conv_weight), kwargs = {}) # %view : [#users=1] = call_method[target=view](args = (%conv_bias, [1, -1, 1, 1]), kwargs = {}) # %add : [#users=1] = call_function[target=operator.add](args = (%conv2d, %view), kwargs = {}) # %mul : [#users=1] = call_function[target=operator.mul](args = (%add, 2), kwargs = {}) # return mul graph = tracer.trace(root=model, meta_args={'x': torch.rand(4, 3, 64, 64).to('meta')}) # def forward(self, x : torch.Tensor): # conv_weight = self.conv.weight # conv_bias = self.conv.bias # conv2d = torch.conv2d(x, conv_weight); x = conv_weight = None # view = conv_bias.view([1, -1, 1, 1]); conv_bias = None # add = conv2d + view; conv2d = view = None # mul = add * 2; add = None # return mul gm = ColoGraphModule(model, graph) gm.recompile() node_list = list(graph.nodes) for node in node_list: if node.op == 'output': continue assert hasattr(node, '_meta_data') weight_node = node_list[1] bias_node = node_list[2] conv_node = node_list[3] view_node = node_list[4] add_node = node_list[5] assert weight_node._meta_data.shape == (6, 3, 2, 2) assert bias_node._meta_data.shape == (6,) assert conv_node._meta_data.shape == (4, 6, 63, 63) assert view_node._meta_data.shape == (1, 6, 1, 1) assert add_node._meta_data.shape == (4, 6, 63, 63) if __name__ == '__main__': test_linear_module() test_conv_module()