import torch import pytest import colossalai import torch.nn.functional as F import torch.multiprocessing as mp from functools import partial from colossalai.tensor import ColoTensor, ProcessGroup, ColoTensorSpec from colossalai.utils import get_current_device from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.tensor import ShardSpec, ComputeSpec, ComputePattern def check_cross_entropy(): input_t = torch.randn(4, 4, device=get_current_device(), requires_grad=True) input_ct = torch.randn(4, 4, device=get_current_device(), requires_grad=True) with torch.no_grad(): input_ct.copy_(input_t) target = torch.randint(4, (4,), dtype=torch.int64, device=get_current_device()) world_size = torch.distributed.get_world_size() pg = ProcessGroup(tp_degree=world_size) input_t_colo = ColoTensor.from_torch_tensor(tensor=input_ct, spec=ColoTensorSpec(pg)) input_shard = input_t_colo.redistribute(ShardSpec([-1], [pg.tp_world_size()])) input_shard.set_tensor_spec(dist_spec=None, compute_spec=ComputeSpec(ComputePattern.TP1D)) output = F.cross_entropy(input_t, target) output_colo = F.cross_entropy(input_shard, target) assert torch.allclose(output_colo, output) output.backward() output_colo.backward() assert torch.allclose(input_t.grad, input_ct.grad) def run_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') check_cross_entropy() @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 2]) @rerun_if_address_is_in_use() def test_loss_func(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_loss_func(1)