# Copied from https://github.com/yangluo7/CAME/blob/master/came_pytorch/CAME.py import torch import torch.optim class CAME(torch.optim.Optimizer): """Implements CAME algorithm. This implementation is based on: `CAME: Confidence-guided Adaptive Memory Efficient Optimization` Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): external learning rate (default: None) eps (tuple[float, float]): regularization constants for square gradient and instability respectively (default: (1e-30, 1e-16)) clip_threshold (float): threshold of root-mean-square of final gradient update (default: 1.0) betas (tuple[float, float, float]): coefficient used for computing running averages of update, square gradient and instability (default: (0.9, 0.999, 0.9999))) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) """ def __init__( self, params, lr=None, eps=(1e-30, 1e-16), clip_threshold=1.0, betas=(0.9, 0.999, 0.9999), weight_decay=0.0, ): assert lr > 0.0 assert all([0.0 <= beta <= 1.0 for beta in betas]) defaults = dict( lr=lr, eps=eps, clip_threshold=clip_threshold, betas=betas, weight_decay=weight_decay, ) super(CAME, self).__init__(params, defaults) @property def supports_memory_efficient_fp16(self): return True @property def supports_flat_params(self): return False def _get_options(self, param_shape): factored = len(param_shape) >= 2 return factored def _rms(self, tensor): return tensor.norm(2) / (tensor.numel() ** 0.5) def _approx_sq_grad(self, exp_avg_sq_row, exp_avg_sq_col): r_factor = (exp_avg_sq_row / exp_avg_sq_row.mean(dim=-1, keepdim=True)).rsqrt_().unsqueeze(-1) c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt() return torch.mul(r_factor, c_factor) def step(self, closure=None): """Performs a single optimization step. Args: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group["params"]: if p.grad is None: continue grad = p.grad if grad.is_sparse: raise RuntimeError("CAME does not support sparse gradients.") state = self.state[p] grad_shape = grad.shape factored = self._get_options(grad_shape) # State Initialization if len(state) == 0: state["step"] = 0 state["exp_avg"] = torch.zeros_like(grad) if factored: state["exp_avg_sq_row"] = torch.zeros(grad_shape[:-1], dtype=p.dtype, device=p.device) state["exp_avg_sq_col"] = torch.zeros( grad_shape[:-2] + grad_shape[-1:], dtype=p.dtype, device=p.device ) state["exp_avg_res_row"] = torch.zeros(grad_shape[:-1], dtype=p.dtype, device=p.device) state["exp_avg_res_col"] = torch.zeros( grad_shape[:-2] + grad_shape[-1:], dtype=p.dtype, device=p.device ) else: state["exp_avg_sq"] = torch.zeros_like(p) state["step"] += 1 update = (grad**2) + group["eps"][0] if factored: exp_avg_sq_row = state["exp_avg_sq_row"] exp_avg_sq_col = state["exp_avg_sq_col"] exp_avg_sq_row.mul_(group["betas"][1]).add_(update.mean(dim=-1), alpha=1.0 - group["betas"][1]) exp_avg_sq_col.mul_(group["betas"][1]).add_(update.mean(dim=-2), alpha=1.0 - group["betas"][1]) # Approximation of exponential moving average of square of gradient update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col) update.mul_(grad) else: exp_avg_sq = state["exp_avg_sq"] exp_avg_sq.mul_(group["betas"][1]).add_(update, alpha=1.0 - group["betas"][1]) update = exp_avg_sq.rsqrt().mul_(grad) update.div_((self._rms(update) / group["clip_threshold"]).clamp_(min=1.0)) exp_avg = state["exp_avg"] exp_avg.mul_(group["betas"][0]).add_(update, alpha=1 - group["betas"][0]) # Confidence-guided strategy # Calculation of instability res = (update - exp_avg) ** 2 + group["eps"][1] if factored: exp_avg_res_row = state["exp_avg_res_row"] exp_avg_res_col = state["exp_avg_res_col"] exp_avg_res_row.mul_(group["betas"][2]).add_(res.mean(dim=-1), alpha=1.0 - group["betas"][2]) exp_avg_res_col.mul_(group["betas"][2]).add_(res.mean(dim=-2), alpha=1.0 - group["betas"][2]) # Approximation of exponential moving average of instability res_approx = self._approx_sq_grad(exp_avg_res_row, exp_avg_res_col) update = res_approx.mul_(exp_avg) else: update = exp_avg.clone() if group["weight_decay"] != 0: p.data.add_(p.data, alpha=-group["weight_decay"] * group["lr"]) update.mul_(group["lr"]) p.data.add_(-update) return loss