import time from contextlib import nullcontext import torch from torch.profiler import ProfilerActivity, profile, schedule, tensorboard_trace_handler class DummyProfiler: def __init__(self): self.step_number = 0 def step(self): self.step_number += 1 # Randomly Generated Data def get_data(batch_size, seq_len, vocab_size): input_ids = torch.randint(0, vocab_size, (batch_size, seq_len), device=torch.cuda.current_device()) attention_mask = torch.ones_like(input_ids) return input_ids, attention_mask def get_tflops(model_numel, batch_size, seq_len, step_time): return model_numel * batch_size * seq_len * 8 / 1e12 / (step_time + 1e-12) def get_profile_context(enable_flag, warmup_steps, active_steps, save_dir): if enable_flag: return profile( activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], schedule=schedule(wait=0, warmup=warmup_steps, active=active_steps), on_trace_ready=tensorboard_trace_handler(save_dir), record_shapes=True, profile_memory=True, ) else: return nullcontext(DummyProfiler()) def get_time_stamp(): cur_time = time.strftime("%d-%H:%M", time.localtime()) return cur_time