import copy import pytest import torch import torch.multiprocessing as mp import torch.nn.functional as F from torch.fx import GraphModule import colossalai from colossalai.core import global_context as gpc from colossalai.fx import ColoTracer from colossalai.fx.graph_module import ColoGraphModule from colossalai.utils import free_port try: from colossalai.fx.codegen import ActivationCheckpointCodeGen with_codegen = True except: # fall back to older pytorch version from colossalai.fx.codegen import python_code_with_activation_checkpoint with_codegen = False class MyNet(torch.nn.Module): def __init__(self) -> None: super().__init__() self.linear0 = torch.nn.Linear(4, 4) self.linear1 = torch.nn.Linear(4, 4) self.linear2 = torch.nn.Linear(4, 4) self.linear3 = torch.nn.Linear(4, 4) self.linear4 = torch.nn.Linear(4, 4) self.linear5 = torch.nn.Linear(4, 4) self.linear6 = torch.nn.Linear(4, 4) def forward(self, x): x = self.linear0(x) x = self.linear1(x) x = self.linear2(x) x = self.linear3(x) x = self.linear4(x) x = self.linear5(x) x = self.linear6(x) return x def _is_all_gradient_close(m: torch.nn.Module, gm: GraphModule) -> bool: for m_p, gm_p in zip(m.parameters(), gm.parameters()): if not torch.allclose(m_p.grad, gm_p.grad): return False return True def _test_fwd_and_bwd(model: torch.nn.Module, gm: ColoGraphModule, data: torch.Tensor): # test forward non_fx_out = model(data) fx_out = gm(data) assert torch.equal(non_fx_out, fx_out), "fx_out doesn't comply with original output" # test barckward loss0 = non_fx_out.sum() loss0.backward() loss1 = fx_out.sum() loss1.backward() assert _is_all_gradient_close(model, gm), "gm doesn't have the same gradient as original one" def _run_offload_codegen(rank): # launch colossalai to make sure we could execute colossalai.utils.checkpoint currectly colossalai.launch(config={}, rank=rank, world_size=1, host='localhost', port=free_port(), backend='nccl') # build model and input model = MyNet().cuda() data = torch.rand(4, 4).cuda() # trace the module and replace codegen tracer = ColoTracer(trace_act_ckpt=True) graph = tracer.trace(model) codegen = ActivationCheckpointCodeGen() graph.set_codegen(codegen) # annotate the activation offload part # also annotate the activation_checkpoint so we could test both types # of input offload for node in graph.nodes: if node.name == "linear0": node.meta['activation_offload'] = [0, True, False] if node.name == "linear1": node.meta['activation_offload'] = [0, True, False] if node.name == "linear2": node.meta['activation_offload'] = [1, True, True] if node.name == "linear4": node.meta['activation_offload'] = [2, False, True] if node.name == "linear5": node.meta['activation_checkpoint'] = [0] node.meta['activation_offload'] = True gm = ColoGraphModule(copy.deepcopy(model), graph) gm.recompile() # assert we have all the components code = graph.python_code("self").src assert "def pack_hook_input(self, x):" in code and \ "def unpack_hook(self, packed):" in code and \ "def pack_hook_no_input(self, x):" in code and \ "setattr(x, 'offload', True)" in code and \ "setattr(linear3, 'offload', False)" in code and \ "with torch.autograd.graph.saved_tensors_hooks(self.pack_hook_input, self.unpack_hook):" in code and \ "with torch.autograd.graph.save_on_cpu(pin_memory=True):" in code and \ "with torch.autograd.graph.saved_tensors_hooks(self.pack_hook_no_input, self.unpack_hook):" in code and \ "colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_0, True, linear4, use_reentrant=False)" in code _test_fwd_and_bwd(model, gm, data) gpc.destroy() @pytest.mark.skipif(not with_codegen, reason='torch version is lower than 1.12.0') def test_act_ckpt_codegen(): mp.spawn(_run_offload_codegen, nprocs=1) def _run_offload_codegen_torch11(rank): # launch colossalai to make sure we could execute colossalai.utils.checkpoint currectly colossalai.launch(config={}, rank=rank, world_size=1, host='localhost', port=free_port(), backend='nccl') # build model and input model = MyNet().cuda() data = torch.rand(4, 4).cuda() # trace the module and replace codegen tracer = ColoTracer(trace_act_ckpt=True) graph = tracer.trace(model) # replace a bound method of an object graph._python_code = python_code_with_activation_checkpoint.__get__(graph) # annotate the activation offload part # also annotate the activation_checkpoint so we could test both types # of input offload for node in graph.nodes: if node.name == "linear0": node.meta['activation_offload'] = [0, True, False] if node.name == "linear1": node.meta['activation_offload'] = [0, True, False] if node.name == "linear2": node.meta['activation_offload'] = [1, True, True] if node.name == "linear4": node.meta['activation_offload'] = [2, False, True] if node.name == "linear5": node.meta['activation_checkpoint'] = [0] node.meta['activation_offload'] = True gm = ColoGraphModule(copy.deepcopy(model), graph) gm.recompile() # assert we have all the components code = graph.python_code("self").src assert "def pack_hook_input(self, x):" in code and \ "def unpack_hook(self, packed):" in code and \ "def pack_hook_no_input(self, x):" in code and \ "setattr(x, 'offload', True)" in code and \ "setattr(linear3, 'offload', False)" in code and \ "with torch.autograd.graph.saved_tensors_hooks(self.pack_hook_input, self.unpack_hook):" in code and \ "with torch.autograd.graph.save_on_cpu(pin_memory=True):" in code and \ "with torch.autograd.graph.saved_tensors_hooks(self.pack_hook_no_input, self.unpack_hook):" in code and \ "colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_0, True, linear4, use_reentrant=False)" in code _test_fwd_and_bwd(model, gm, data) gpc.destroy() @pytest.mark.skip(reason="currently torch11 ColoGraphModule is not implemented") def test_act_ckpt_python_code_torch11(): mp.spawn(_run_offload_codegen_torch11, nprocs=1) if __name__ == "__main__": _run_offload_codegen(0)