#!/usr/bin/env python # -*- encoding: utf-8 -*- import gc import psutil import torch from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.logging import get_dist_logger from colossalai.utils.cuda import get_current_device from typing import Optional def colo_cuda_memory_used(device: Optional[torch.device] = None) -> int: """Get the free memory info of device. Args: device (Optional[``torch.device``]): a torch device instance or None. Defaults None. Returns: int: current memory usage, sized by Byte. """ if device: assert device.type == 'cuda' else: device = torch.device(f'cuda:{get_current_device()}') ret: int = torch.cuda.memory_allocated(device) # get the peak memory to report correct data, so reset the counter for the next call if hasattr(torch.cuda, "reset_peak_memory_stats"): # pytorch 1.4+ torch.cuda.reset_peak_memory_stats(device) return ret def bytes_to_GB(val, decimal=2): """A byte-to-Gigabyte converter, default using binary notation. :param val: X bytes to convert :return: X' GB """ return round(val / (1024 * 1024 * 1024), decimal) def bytes_to_MB(val, decimal=2): """A byte-to-Megabyte converter, default using binary notation. :param val: X bytes to convert :return: X' MB """ return round(val / (1024 * 1024), decimal) def report_memory_usage(message, logger=None, report_cpu=False): """Calculate and print RAM usage (in GB) Args: message (str): A prefix message to add in the log. logger (:class:`colossalai.logging.DistributedLogger`): The logger used to record memory information. report_cpu (bool, optional): Whether to report CPU memory. Raises: EnvironmentError: Raise error if no distributed environment has been initialized. """ if not gpc.is_initialized(ParallelMode.GLOBAL): raise EnvironmentError("No distributed environment is initialized") gpu_allocated = bytes_to_MB(torch.cuda.memory_allocated()) gpu_max_allocated = bytes_to_MB(torch.cuda.max_memory_allocated()) gpu_cached = bytes_to_MB(torch.cuda.memory_reserved()) gpu_max_cached = bytes_to_MB(torch.cuda.max_memory_reserved()) full_log = f"{message}: GPU: allocated {gpu_allocated} MB, max allocated {gpu_max_allocated} MB, " \ + f"cached: {gpu_cached} MB, max cached: {gpu_max_cached} MB" if report_cpu: # python doesn't do real-time garbage collection so do it explicitly to get the correct RAM reports gc.collect() vm_stats = psutil.virtual_memory() vm_used = bytes_to_MB(vm_stats.total - vm_stats.available) full_log += f", CPU Virtual Memory: used = {vm_used} MB, percent = {vm_stats.percent}%" if logger is None: logger = get_dist_logger() logger.info(full_log) # get the peak memory to report correct data, so reset the counter for the next call if hasattr(torch.cuda, "reset_peak_memory_stats"): # pytorch 1.4+ torch.cuda.reset_peak_memory_stats()