from functools import partial import colossalai import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from colossalai.nn import CheckpointModule from colossalai.logging import get_dist_logger from colossalai.testing import parameterize from colossalai.utils import free_port from colossalai.context import MOE_CONTEXT from colossalai.nn.layer import MoeModule from colossalai.zero.init_ctx import ZeroInitContext from colossalai.zero.shard_utils import (BucketTensorShardStrategy, TensorShardStrategy) from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import get_current_device from tests.test_zero.common import CONFIG class MoeModel(CheckpointModule): def __init__(self, checkpoint: bool = False): super().__init__(checkpoint) self.proj1 = nn.Linear(4, 16) expert_cls = nn.Linear expert_args_dict = dict(in_features=16, out_features=16) self.moe = MoeModule(dim_model=16, num_experts=8, use_residual=True, expert_cls=expert_cls, **expert_args_dict) self.proj2 = nn.Linear(16, 4) def forward(self, x): x = self.proj1(x) x = self.moe(x) x = self.proj2(x) return x @parameterize("init_device_type", ['cpu', 'cuda']) @parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy]) def run_moe_zero_init(init_device_type, shard_strategy_class): logger = get_dist_logger("test_moe_zero_init") if init_device_type == 'cuda': init_device = get_current_device() elif init_device_type == 'cpu': init_device = torch.device("cpu") else: raise NotImplementedError("Unknown device found.") model_numel_tensor = torch.zeros(1, dtype=torch.int) with ZeroInitContext(target_device=init_device, shard_strategy=shard_strategy_class(), shard_param=True, model_numel_tensor=model_numel_tensor): model = MoeModel(checkpoint=True) for name, param in model.named_parameters(): assert hasattr(param, 'colo_attr') # the weights in the gate should be fp32 if 'gate' in name: assert param.colo_attr.sharded_data_tensor.dtype == torch.float32 else: assert param.colo_attr.sharded_data_tensor.dtype == torch.half # the parameters in moe experts and its gate should not be sharded if ('experts' in name) or ('gate' in name) or ('residual_combine' in name): assert not param.colo_attr.sharded_data_tensor.is_sharded else: assert param.colo_attr.sharded_data_tensor.is_sharded # the parameters in moe experts is not replicated if 'experts' in name: assert not param.colo_attr.is_replicated else: assert param.colo_attr.is_replicated if param.colo_attr.param_is_sharded: assert param.colo_attr.data_payload.device.type == init_device.type, \ f'{param.colo_attr.data_payload.device.type} vs. {init_device.type}' else: assert param.colo_attr.data_payload.device.type == 'cuda' def _run_dist(rank, world_size, port): colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') MOE_CONTEXT.setup(seed=42) run_moe_zero_init() @pytest.mark.dist @pytest.mark.parametrize("world_size", [2, 4]) @rerun_if_address_is_in_use() def test_moe_zero_init(world_size): run_func = partial(_run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_moe_zero_init(world_size=2)