import torch import colossalai import pytest import torch.multiprocessing as mp from functools import partial from colossalai.gemini.chunk import ChunkManager from colossalai.testing import rerun_if_address_is_in_use, parameterize from colossalai.utils import free_port from colossalai.tensor import ProcessGroup, ColoTensor, ColoTensorSpec from tests.test_tensor.common_utils import debug_print CUDA_MEM_0 = {False: 512, True: 1024} CUDA_MEM_1 = {False: 0, True: 1024} CPU_MEM = {True: {True: 0, False: 0}, False: {True: 512, False: 0}} @parameterize('keep_gathered', [True, False]) @parameterize('pin_memory', [True, False]) def exam_chunk_memory(keep_gathered, pin_memory): pg = ProcessGroup() debug_print([0], "keep_gathered: {}, pin_memory: {}".format(keep_gathered, pin_memory)) params = [ColoTensor(torch.rand(8, 8), spec=ColoTensorSpec(pg)) for _ in range(3)] config = {2: dict(chunk_size=128, keep_gathered=keep_gathered)} chunk_manager = ChunkManager(config) assert chunk_manager.total_mem['cpu'] == 0 assert chunk_manager.total_mem['cuda'] == 0 for p in params: chunk_manager.append_tensor(p, 'param', 2, pin_memory=pin_memory) chunk_manager.close_all_groups() assert chunk_manager.total_mem['cpu'] == CPU_MEM[keep_gathered][pin_memory] assert chunk_manager.total_mem['cuda'] == CUDA_MEM_0[keep_gathered] chunks = chunk_manager.get_chunks(params) for chunk in chunks: chunk_manager.access_chunk(chunk) assert chunk_manager.total_mem['cpu'] == CPU_MEM[keep_gathered][pin_memory] assert chunk_manager.total_mem['cuda'] == CUDA_MEM_0[True] for chunk in chunks: chunk_manager.release_chunk(chunk) assert chunk_manager.total_mem['cpu'] == CPU_MEM[keep_gathered][pin_memory] assert chunk_manager.total_mem['cuda'] == CUDA_MEM_0[keep_gathered] for chunk in chunks: chunk_manager.move_chunk(chunk, torch.device('cpu')) assert chunk_manager.total_mem['cpu'] == CPU_MEM[keep_gathered][True] assert chunk_manager.total_mem['cuda'] == CUDA_MEM_1[keep_gathered] def run_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') exam_chunk_memory() @pytest.mark.dist @pytest.mark.parametrize('world_size', [2]) @rerun_if_address_is_in_use() def test_chunk_manager(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_chunk_manager(2)