#!/usr/bin/env bash set -xue if [ -z "$SFT_DATASET" ]; then echo "Please set \$SFT_DATASET to the path to sft dataset." exit 1 fi if [ -z "$PROMPT_PATH" ]; then echo "Please set \$PROMPT_PATH to the path to prompts csv." exit 1 fi if [ -z "$PRETRAIN_DATASET" ]; then echo "Please set \$PRETRAIN_DATASET to the path to alpaca data." exit 1 fi BASE=$(realpath $(dirname $0)) export OMP_NUM_THREADS=8 # install requirements pip install -r ${BASE}/requirements.txt wandb init -m offline # train sft torchrun --standalone --nproc_per_node=4 ${BASE}/train_sft.py --pretrain 'bigscience/bloom-560m' \ --model 'bloom' --strategy colossalai_zero2 --lora_rank 4\ --dataset $SFT_DATASET --max_datasets_size 512 --max_epochs 1 \ --save_path ${BASE}/output torchrun --standalone --nproc_per_node=4 ${BASE}/train_sft.py --pretrain 'gpt2' \ --model 'gpt2' --strategy colossalai_zero2 \ --dataset $SFT_DATASET --max_datasets_size 512 --max_epochs 1 \ --save_path ${BASE}/output torchrun --standalone --nproc_per_node=4 ${BASE}/train_sft.py --pretrain 'facebook/opt-350m' \ --model 'opt' --strategy colossalai_zero2 --lora_rank 4\ --dataset $SFT_DATASET --max_datasets_size 512 --max_epochs 1 \ --save_path ${BASE}/output torchrun --standalone --nproc_per_node=4 ${BASE}/train_sft.py --pretrain 'gpt2' \ --model 'gpt2' --strategy ddp --lora_rank 4\ --dataset $SFT_DATASET --max_datasets_size 512 --max_epochs 1 \ --save_path ${BASE}/output #torchrun --standalone --nproc_per_node=4 ${BASE}/train_sft.py --pretrain 'facebook/opt-350m' \ # --model 'opt' --strategy naive \ # --dataset $SFT_DATASET --max_datasets_size 512 --max_epochs 1 \ # --save_path ${BASE}/output rm -rf ${BASE}/output # train rm torchrun --standalone --nproc_per_node=2 ${BASE}/train_reward_model.py \ --pretrain 'facebook/opt-350m' --model 'opt' \ --strategy colossalai_zero2 --loss_fn 'log_sig'\ --dataset 'Anthropic/hh-rlhf' --subset 'harmless-base' \ --test True --lora_rank 4 \ --save_path ${BASE}/rm_ckpt_opt.pt torchrun --standalone --nproc_per_node=2 ${BASE}/train_reward_model.py \ --pretrain 'gpt2' --model 'gpt2' \ --strategy colossalai_zero2 --loss_fn 'log_exp' \ --dataset 'Dahoas/rm-static' \ --test True --lora_rank 4 \ --save_path ${BASE}/rm_ckpt_gpt.pt torchrun --standalone --nproc_per_node=2 ${BASE}/train_reward_model.py \ --pretrain 'gpt2' --model 'gpt2' \ --strategy ddp --loss_fn 'log_exp' \ --dataset 'Dahoas/rm-static' \ --test True --lora_rank 4 \ --save_path ${BASE}/rm_ckpt.pt torchrun --standalone --nproc_per_node=2 ${BASE}/train_reward_model.py \ --pretrain 'bigscience/bloom-560m' --model 'bloom' \ --strategy colossalai_zero2 --loss_fn 'log_sig' \ --dataset 'Anthropic/hh-rlhf' --subset 'harmless-base' \ --test True --lora_rank 4 \ --save_path ${BASE}/rm_ckpt.pt torchrun --standalone --nproc_per_node=2 ${BASE}/train_reward_model.py \ --pretrain 'microsoft/deberta-v3-large' --model 'deberta' \ --strategy colossalai_zero2 --loss_fn 'log_sig' \ --dataset 'Anthropic/hh-rlhf' --subset 'harmless-base' \ --test True --lora_rank 4 \ --save_path ${BASE}/rm_ckpt.pt torchrun --standalone --nproc_per_node=2 ${BASE}/train_reward_model.py \ --pretrain 'roberta-base' --model 'roberta' \ --strategy colossalai_zero2 --loss_fn 'log_exp'\ --dataset 'Anthropic/hh-rlhf' --subset 'harmless-base'\ --test True --lora_rank 4 \ --save_path ${BASE}/rm_ckpt.pt rm -rf ${BASE}/rm_ckpt.pt torchrun --standalone --nproc_per_node=2 ${BASE}/train_prompts.py --prompt_path $PROMPT_PATH --pretrain_dataset $PRETRAIN_DATASET \ --strategy colossalai_zero2 --num_episodes 1 --max_timesteps 2 \ --update_timesteps 2 --max_epochs 1 --train_batch_size 2 \ --pretrain 'facebook/opt-350m' --model opt \ --rm_pretrain 'facebook/opt-350m' \ --rm_path ${BASE}/rm_ckpt_opt.pt \ --save_path ${BASE}/actor_checkpoint_prompts.pt rm -rf ${BASE}/rm_ckpt_opt.pt torchrun --standalone --nproc_per_node=2 ${BASE}/train_prompts.py --prompt_path $PROMPT_PATH --pretrain_dataset $PRETRAIN_DATASET \ --strategy colossalai_zero2 --num_episodes 1 --max_timesteps 2 \ --update_timesteps 2 --max_epochs 1 --train_batch_size 2 \ --pretrain 'gpt2' --model gpt2 \ --rm_pretrain 'gpt2' \ --rm_path ${BASE}/rm_ckpt_gpt.pt \ --save_path ${BASE}/actor_checkpoint_prompts.pt rm -rf ${BASE}/rm_ckpt_gpt.pt rm -rf ${BASE}/actor_checkpoint_prompts.pt