import torch.nn from colossalai.gemini.memory_tracer.model_data_memtracer import GLOBAL_CUDA_MEM_INFO from colossalai.gemini.ophooks.runtime_mem_tracer_hook import GradMemTracerHook, ParamMemTracerHook from colossalai.nn.parallel.data_parallel import _cast_float from colossalai.tensor.param_op_hook import ColoParamOpHookManager __all__ = ['RuntimeMemTracer'] class RuntimeMemTracer(): def __init__(self, module: torch.nn.Module, dtype: torch.dtype = torch.half): super().__init__() self.module = module self.dtype = dtype self.param_op_hook = ParamMemTracerHook() self.grad_hook = GradMemTracerHook(module) self.cpu_param_data_dict = {} for p in module.parameters(): p.data = p.data.to(dtype) self._cast_buffers_to_cuda_dtype() def __call__(self, *args, **kwargs): return self.forward(*args, **kwargs) def _backup_params(self): """ The function is called before forward. Backup model params on cpu. """ for p in self.module.parameters(): self.cpu_param_data_dict[p] = torch.empty(p.data.shape, dtype=self.dtype, device="cpu") self.cpu_param_data_dict[p].copy_(p.data) def _restore_params(self): """ This function is called after backward. Restore model params. """ for p in self.module.parameters(): p.data = torch.empty(p.data.shape, dtype=self.dtype, device="cpu", requires_grad=p.data.requires_grad) p.data.copy_(self.cpu_param_data_dict[p]) self.cpu_param_data_dict.clear() def _pre_forward(self): self._clear_cuda_mem_info() self._backup_params() self.grad_hook.register_grad_hook() self.param_op_hook.mem_monitor.start() def forward(self, *args, **kwargs): args, kwargs = _cast_float(args, self.dtype), _cast_float(kwargs, self.dtype) self.module.zero_grad(set_to_none=True) self._pre_forward() with ColoParamOpHookManager.use_hooks(self.param_op_hook): outputs = self.module(*args, **kwargs) return outputs def backward(self, loss): with self.param_op_hook.switch_to_backward(), ColoParamOpHookManager.use_hooks(self.param_op_hook): loss.backward() self._post_backward() def _post_backward(self): cuda_volume = self.param_op_hook.mem_monitor.finish() last_model_data = GLOBAL_CUDA_MEM_INFO.model_data_list[-1] GLOBAL_CUDA_MEM_INFO.non_model_data_list.append(cuda_volume - last_model_data) self.grad_hook.remove_grad_hook() self._restore_params() def _clear_cuda_mem_info(self): GLOBAL_CUDA_MEM_INFO.model_data_list.clear() GLOBAL_CUDA_MEM_INFO.non_model_data_list.clear() GLOBAL_CUDA_MEM_INFO.unreleased_grad_flag.clear() GLOBAL_CUDA_MEM_INFO.unreleased_grad_volume = 0 def _cast_buffers_to_cuda_dtype(self): for buffer in self.module.buffers(): buffer.data = buffer.cuda() if torch.is_floating_point(buffer): buffer.data = buffer.data.to(self.dtype)