from pathlib import Path from typing import Union from colossalai.engine import Engine from torch.utils.tensorboard import SummaryWriter from colossalai.engine.ophooks import MemTracerOpHook from colossalai.utils.profiler.legacy.prof_utils import BaseProfiler class MemProfiler(BaseProfiler): """Wraper of MemOpHook, used to show GPU memory usage through each iteration To use this profiler, you need to pass an `engine` instance. And the usage is same like CommProfiler. Usage:: mm_prof = MemProfiler(engine) with ProfilerContext([mm_prof]) as prof: writer = SummaryWriter("mem") engine.train() ... prof.to_file("./log") prof.to_tensorboard(writer) """ def __init__(self, engine: Engine, warmup: int = 50, refreshrate: int = 10) -> None: super().__init__(profiler_name="MemoryProfiler", priority=0) self._mem_tracer = MemTracerOpHook(warmup=warmup, refreshrate=refreshrate) self._engine = engine def enable(self) -> None: self._engine.add_hook(self._mem_tracer) def disable(self) -> None: self._engine.remove_hook(self._mem_tracer) def to_tensorboard(self, writer: SummaryWriter) -> None: stats = self._mem_tracer.async_mem_monitor.state_dict['mem_stats'] for info, i in enumerate(stats): writer.add_scalar("memory_usage/GPU", info, i) def to_file(self, data_file: Path) -> None: self._mem_tracer.save_results(data_file) def show(self) -> None: stats = self._mem_tracer.async_mem_monitor.state_dict['mem_stats'] print(stats)